scholarly journals 5-Arylaminouracil Derivatives as Potential Dual-Action Agents

Acta Naturae ◽  
2015 ◽  
Vol 7 (3) ◽  
pp. 113-115
Author(s):  
E. S. Matyugina ◽  
M. S. Novikov ◽  
D. A. Babkov ◽  
V. T. Valuev-Elliston ◽  
C. Vanpouille ◽  
...  

Several 5-aminouracil derivatives that have previously been shown to inhibit Mycobacterium tuberculosis growth at concentrations of 5-40 g/mL are demonstrated to act also as noncompetitive non-nucleoside inhibitors of HIV-1 reverse transcriptase without causing toxicity in vitro (МT-4 cells) and ex vivo (human tonsillar tissue).

Author(s):  
Bernadien M. Nijmeijer ◽  
Marta Bermejo-Jambrina ◽  
Tanja M. Kaptein ◽  
Carla M. S. Ribeiro ◽  
Doris Wilflingseder ◽  
...  

AbstractSemen is important in determining HIV-1 susceptibility but it is unclear how it affects virus transmission during sexual contact. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 during sexual contact and have a barrier function as LCs are restrictive to HIV-1. As semen from people living with HIV-1 contains complement-opsonized HIV-1, we investigated the effect of complement on HIV-1 dissemination by human LCs in vitro and ex vivo. Notably, pre-treatment of HIV-1 with semen enhanced LC infection compared to untreated HIV-1 in the ex vivo explant model. Infection of LCs and transmission to target cells by opsonized HIV-1 was efficiently inhibited by blocking complement receptors CR3 and CR4. Complement opsonization of HIV-1 enhanced uptake, fusion, and integration by LCs leading to an increased transmission of HIV-1 to target cells. However, in the absence of both CR3 and CR4, C-type lectin receptor langerin was able to restrict infection of complement-opsonized HIV-1. These data suggest that complement enhances HIV-1 infection of LCs by binding CR3 and CR4, thereby bypassing langerin and changing the restrictive nature of LCs into virus-disseminating cells. Targeting complement factors might be effective in preventing HIV-1 transmission.


1996 ◽  
Vol 39 (8) ◽  
pp. 1589-1600 ◽  
Author(s):  
Andrew L. Hopkins ◽  
Jingshan Ren ◽  
Robert M. Esnouf ◽  
Benjamin E. Willcox ◽  
E. Yvonne Jones ◽  
...  

2001 ◽  
Vol 285 (4) ◽  
pp. 863-872 ◽  
Author(s):  
Marie-Thérèse Château ◽  
Véronique Robert-Hebmann ◽  
Christian Devaux ◽  
Jean-Bernard Lazaro ◽  
Bruno Canard ◽  
...  

Biochemistry ◽  
1995 ◽  
Vol 34 (32) ◽  
pp. 10106-10112 ◽  
Author(s):  
Ronald S. Fletcher ◽  
Dominique Arion ◽  
Gadi Borkow ◽  
Mark A. Wainberg ◽  
Gary I. Dmitrienko ◽  
...  

2018 ◽  
Vol 123 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Leela S. Dodda ◽  
Julian Tirado-Rives ◽  
William L. Jorgensen

2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


Sign in / Sign up

Export Citation Format

Share Document