scholarly journals Existence of Periodic Solutions in the System of Nonlinear Oscillators with Power Potentials on a Two-Dimensional Lattice

Author(s):  
S. M. Bak ◽  
2004 ◽  
Vol 73 (2) ◽  
pp. 358-363 ◽  
Author(s):  
Tsunehiro Yokoi ◽  
Hiroyasu Yamada ◽  
Kazuhiro Nozaki

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


2020 ◽  
Vol 20 (3) ◽  
pp. 725-737 ◽  
Author(s):  
Zhenping Feng ◽  
Zhuoran Du

AbstractWe consider periodic solutions of the following problem associated with the fractional Laplacian: {(-\partial_{xx})^{s}u(x)+\partial_{u}F(x,u(x))=0} in {\mathbb{R}}. The smooth function {F(x,u)} is periodic about x and is a double-well potential with respect to u with wells at {+1} and -1 for any {x\in\mathbb{R}}. We prove the existence of periodic solutions whose periods are large integer multiples of the period of F about the variable x by using variational methods. An estimate of the energy functional, Hamiltonian identity and Modica-type inequality for periodic solutions are also established.


Sign in / Sign up

Export Citation Format

Share Document