The Existence of Periodic Solutions of Nonlinear Oscillators

1965 ◽  
Vol 13 (1) ◽  
pp. 6-36 ◽  
Author(s):  
J. H. Heinbockel ◽  
R. A. Struble
Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


2020 ◽  
Vol 20 (3) ◽  
pp. 725-737 ◽  
Author(s):  
Zhenping Feng ◽  
Zhuoran Du

AbstractWe consider periodic solutions of the following problem associated with the fractional Laplacian: {(-\partial_{xx})^{s}u(x)+\partial_{u}F(x,u(x))=0} in {\mathbb{R}}. The smooth function {F(x,u)} is periodic about x and is a double-well potential with respect to u with wells at {+1} and -1 for any {x\in\mathbb{R}}. We prove the existence of periodic solutions whose periods are large integer multiples of the period of F about the variable x by using variational methods. An estimate of the energy functional, Hamiltonian identity and Modica-type inequality for periodic solutions are also established.


2001 ◽  
Vol 44 (8) ◽  
pp. 1019-1029 ◽  
Author(s):  
Shih-Sen Chang ◽  
Yu-Qing Chen ◽  
Kok-Keong Tan ◽  
George X.Z. Yuan

1988 ◽  
Vol 55 (3) ◽  
pp. 721-728 ◽  
Author(s):  
Gamal M. Mahmoud ◽  
Tassos Bountis

We consider a class of parametrically driven nonlinear oscillators: x¨ + k1x + k2f(x,x˙)P(Ωt) = 0, P(Ωt + 2π) = P(Ωt)(*) which can be used to describe, e.g., a pendulum with vibrating length, or the displacements of colliding particle beams in high energy accelerators. Here we study numerically and analytically the subharmonic periodic solutions of (*), with frequency 1/m ≅ √k1, m = 1, 2, 3,…. In the cases of f(x,x˙) = x3 and f(x,x˙) = x4, with P(Ωt) = cost, all of these so called synchronized periodic orbits are obtained numerically, by a new technique, which we refer to here as the indicatrix method. The theory of generalized averaging is then applied to derive highly accurate expressions for these orbits, valid to the second order in k2. Finally, these analytical results are used, together with the perturbation methods of multiple time scaling, to obtain second order expressions for regions of instability of synchronized periodic orbits in the k1, k2 plane, which agree very well with the results of numerical experiments.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Meiqiang Feng

The Rayleigh equation with two deviating argumentsx′′(t)+f(x'(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=e(t)is studied. By using Leray-Schauder index theorem and Leray-Schauder fixed point theorem, we obtain some new results on the existence of periodic solutions, especially for the existence of nontrivial periodic solutions to this equation. The results are illustrated with two examples, which cannot be handled using the existing results.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Jifeng Chu ◽  
Juntao Sun ◽  
Patricia J. Y. Wong

We present a survey on the existence of periodic solutions of singular differential equations. In particular, we pay our attention to singular scalar differential equations, singular damped differential equations, singular impulsive differential equations, and singular differential systems.


Sign in / Sign up

Export Citation Format

Share Document