Growth Analysis of Composite Entire Functions of Several Complex Variables Based on Relative Order

Author(s):  
Balram Prajapati ◽  
Anupama Rastogi

<p>In this paper we introduce some new results depending on the comparative growth properties of composition of entire function of several complex variables using relative L^*-order, Relative L^*-lower order and L≡L(r_1,r_2,r_3,……..,r_n) is a slowly changing functions. We prove some relation between relative L^*- order and relative L^*- lower order.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Luis Manuel Sanchez Ruiz ◽  
Sanjib Kumar Datta ◽  
Tanmay Biswas ◽  
Golok Kumar Mondal

We discuss some growth rates of composite entire functions on the basis of the definition of relativep,qth order (relativep,qth lower order) with respect to another entire function which improve some earlier results of Roy (2010) wherepandqare any two positive integers.



2019 ◽  
Vol 12 (03) ◽  
pp. 1950044
Author(s):  
Tanmay Biswas

Let [Formula: see text] be a complete ultrametric algebraically closed field and [Formula: see text] be the [Formula: see text]-algebra of entire functions on [Formula: see text]. For [Formula: see text], [Formula: see text], we wish to introduce the notions of relative order and relative lower order of [Formula: see text] with respect to [Formula: see text]. Hence, after proving some basic results, in this paper, we estimate some growth rates of composite p-adic entire functions on the basis of their relative orders and relative lower orders.



2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Mohammed Harfaoui

The aim of this paper is the characterization of the generalized growth of entire functions of several complex variables by means of the best polynomial approximation and interpolation on a compact with respect to the set , where is the Siciak extremal function of a -regular compact .



Author(s):  
Sanjib Kumar Datta ◽  
Tanmay Biswas ◽  
Ahsanul Hoque

Abstract In this paper we study the comparative growth properties of a composition of entire and meromorphic functions on the basis of the relative order (relative lower order) of Wronskians generated by entire and meromorphic functions.



2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Sanjib Kumar Datta ◽  
Tanmay Biswas ◽  
Sarmila Bhattacharyya

Some results on comparative growth properties of maximum terms and maximum moduli of composite entire functions on the basis of relative L*-order and relative L*-type are proved in this paper.



Author(s):  
Carlos A. Berenstein ◽  
B. A. Taylor

We show that any mean-periodic functionfcan be represented in terms of exponential-polynomial solutions of the same convolution equationfsatisfies, i.e.,u∗f=0(μ∈E′(ℝn)). This extends ton-variables the work ofL. Schwartz on mean-periodicity and also extendsL. Ehrenpreis' work on partial differential equations with constant coefficients to arbitrary convolutors. We also answer a number of open questions about mean-periodic functions of one variable. The basic ingredient is our work on interpolation by entire functions in one and several complex variables.



2008 ◽  
Vol 5 (4) ◽  
pp. 660-668
Author(s):  
Baghdad Science Journal

The study of properties of space of entire functions of several complex variables was initiated by Kamthan [4] using the topological properties of the space. We have introduced in this paper the sub-space of space of entire functions of several complex variables which is studied by Kamthan.





Sign in / Sign up

Export Citation Format

Share Document