Development of a Computer Aided Critical Lift Planning System Using Parametric Modeling Software

Author(s):  
Srikanth Chadalavada ◽  
◽  
Koshy Varghese ◽  
2004 ◽  
Vol 18 (8) ◽  
pp. 1349-1357 ◽  
Author(s):  
Honghee Lee ◽  
Myeong-Woo Cho ◽  
Gil-Sang Yoon ◽  
Jin-Hwa Choi

Author(s):  
Marco Vitali ◽  
Roberta Spallone ◽  
Francesco Carota

In this chapter are developed some considerations about the heuristic potentialities of parametric digital modeling as a tool for analyzing and interpreting architectural heritage. Observed that the parametric thinking in architecture could be recognized almost from the origin, new parametric modeling software allows to verify the design criteria of the past. On the basis of previous studies on Baroque vaulted atria, this chapter develops, using parametric modeling tools, a real vocabulary of shapes and their possible combinations, suggested by the architectural literature of the time and the survey of about seventy atria in Turin. This method has been tested on the case study of the lunettes dome in the atrium of Palazzo Carignano.


Author(s):  
J. Dong ◽  
S. Y. Hong ◽  
G. Hasselgren

This paper represents a part of research plan of “Advanced Endodontic Technology Development.” In order to aid endodontic treatment a 3-D computer model of root canals has been created which shows the geometrical characteristics. The extent of work needed for root canal treatment is obtained from this 3-D model. The objective of this paper is to convert the geometrical characteristics into automatic treatment procedure planning. This computer-aided process planning for endodontic treatment determines tool selection and process method. It also calculates tool path and optimum tool movement distance. The output of this planning system is a numerical controlled program. Because of paper size limitation, only tool selection and path control during coronal canal treatment preparation for posterior teeth are discussed in the paper. The computer-aided treatment procedure planning system provides transformation from a 3-D canal model to a machine-controlled program that will yield a treated root canal ready for filling. It serves as a bridge between design (3-D canal model) and manufacturing (canal treatment). Unlike conventional methods for root canal treatment, the computer-aided treatment process planning system emphasizes a non-destructive internal tooth geometry examination and less invasive access preparation.


Author(s):  
J. Dong ◽  
S. Y. Hong ◽  
G. Hasselgren

This paper represents a part of research plan of “Advanced Endodontic Technology Development”. In order to aid endodontic treatment a 3-D computer model of root canals has been created which shows the geometrical characteristics. The extent of work needed for root canal treatment is obtained from this 3-D model. The objective of this paper is to convert the geometrical characteristics into automatic treatment procedure planning. This computer-aided process planning for endodontic treatment determines tool selection and process method. It also calculates tool path and optimum tool movement distance. The output of this planning system is a numerical controlled program. Because of paper size limitation, only tool selection and path control during coronal canal treatment preparation for anterior teeth are discussed in the paper. The computer-aided treatment procedure planning system provides transformation from a 3-D canal model to a machine-controlled program that will yield a treated root canal ready for filling. It serves as a bridge between design (3-D canal model) and manufacturing (canal treatment). Unlike conventional methods for root canal treatment, the computer-aided treatment process planning system emphasizes a non-destructive internal tooth geometry examination and less invasive access preparation.


Author(s):  
Huaming Lee ◽  
Jon Sims Williams ◽  
James Tannock

Inspection planning is a process of reasoning about inspection activities. As a result, a sequence of inspection actions is formulated, which, when performed, will achieve the desired measurements. In manufacturing, automated inspection technologies, such as Computer-Aided Inspection (CAI) or Co-ordinate Measuring Machines (CMMs), will be facilitated by inspection planning. Inspection planning involves the following four aspects: representation of inspection features; process formalization; modeling of inspection activities; and, finally, plan synthesis. This paper discusses an approach to knowledge-based inspection planning. Accordingly, a prototype inspection planning system has been developed, which is also described in this paper.


Sign in / Sign up

Export Citation Format

Share Document