scholarly journals APPLICATION OF THE TEMPERATURE AND CONCENTRATION DEPENDENCE OF THE EFFECTIVENESS OF INHIBITORS BASED ON α -AMINO KETONES

2021 ◽  
Vol 92 (11) ◽  
Author(s):  
Mingnikul Kurbanov ◽  
Guzal Rakhmatova
1996 ◽  
Vol 93 ◽  
pp. 819-827 ◽  
Author(s):  
C Michon ◽  
G Cuvelier ◽  
B Launay ◽  
A Parker

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-273-C8-274 ◽  
Author(s):  
N. Pillmayr ◽  
G. Hilscher ◽  
E. Gratz ◽  
V. Sechovsky

1992 ◽  
Vol 1 (1) ◽  
pp. 631-635
Author(s):  
U. Stuhr ◽  
D. Steinbinder ◽  
H. Wipf ◽  
B. Frick

2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


1981 ◽  
Vol 46 (6) ◽  
pp. 1433-1438
Author(s):  
Jan Vřešťál

The conditions of the existence of extreme on the concentration dependences of absolute temperature (x are mole fractions) T = Tα(xkα) and T = Tβ(xkβ) denoting equilibrium between two binary regular solutions are generally developed under two assumptions: 1) Free enthalpy change of pure components k = i, j at transition from phase α to β is a linear function of temperature. 2) Concentration dependence of excess free enthalpy (identical with enthalpy) of solutions α and β, respectively, is described in regular model by one concentration and temperature independent parameter for each individual phase.


1980 ◽  
Vol 45 (6) ◽  
pp. 1639-1645 ◽  
Author(s):  
Jindřich Novák ◽  
Ivo Sláma

The dependence of the equivalent conductivity on the temperature and composition of the Ca(NO3)2-CaI2-H2O system was studied. The ionic fraction [I-]/([I-] + [NO-3]) was changed from 0.1 to 0.5, the mole fraction of calcium salts (assumed in anhydrous form in the presence of free water molecules) was 0.075-0.200. The equivalent conductivity was found to be a linear function of the ionic fraction at constant temperature and salt concentration.


Sign in / Sign up

Export Citation Format

Share Document