residual resistivity
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 24)

H-INDEX

30
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 125
Author(s):  
Vincenzo D’Auria ◽  
Pierluigi Bruzzone ◽  
Mickael Sebastian Meyer ◽  
Enrique Rodriguez Castro ◽  
Stefano Sgobba

This manuscript reports on the application of copper thermal spraying in the manufacturing process of an electrical connection between Nb3Sn cables for superconducting magnets of fusion reactors. The joint is realized through diffusion bonding of the sprayed coating of the two cables. The main requirement for such a connection is its electrical resistance, which must be below 1 nΩ at B = 8 T, I = 63.3 kA and T = 4.5 K. Micrographs of the joint prototype were taken to relate the joint resistance with its microstructure and to provide feedback on the manufacturing process. Optical microscopy (OM) was used to evaluate the grain size of the coating, presence of oxide phases and to analyze the jointed surfaces. Scanning electron microscopy (SEM) and, in particular, energy-dispersive X-ray spectroscopy (EDX) were used to confirm the elemental composition of specimens extracted from the prototype. It is shown that the copper coating has an oxide concentration of 40%. Despite this, the resistance of the prototype is 0.48 nΩ in operating conditions, as the oxides are in globular form. The contact ratio between the jointed surfaces is about 95%. In addition, residual resistivity ratio (RRR) measurements were carried out to quantify the electrical quality of the Cu coating.


Author(s):  
Koichiro Okamoto ◽  
Takahisa Tanaka ◽  
Makoto Miyamura ◽  
Hiroki Ishikuro ◽  
Ken Uchida ◽  
...  

Abstract A nonvolatile resistive switching of NanoBridgeTM (NB) at 4 K has been demonstrated for realizing the quantum-classical interface (QCI), in which the challenging of reset operation at cryogenic temperature is successfully achieved. The set voltage of the NB is increased with decreasing temperature, saturated around 150 K and to be 2.55 V at 4 K. The on-state resistances tuned at 1k-5kΩ show small temperature dependence down to 4 K due to high residual resistivity. The increased reset current of the NB at 4 K is compensated by the process optimization with thermal engineering and the increased Idsat of the select transistor at 4 K, resulting in the stable switching. The low-power QCI featuring NBs is a strong candidate for controlling a large number of qubits at cryogenic temperature.


Author(s):  
Yeru Wang ◽  
yajie Liang ◽  
Jiao Ding ◽  
Naihui Chen ◽  
Yanling Chen ◽  
...  

Abstract In the process of minimizing stress in sputtered Molybdenum (Mo) films for fabricating transition-edge sensor (TES) devices, we have investigated correlations between the stress and film deposition parameters. At a fixed sputtering power, the tensile stress of our film samples decreases toward both low and high ends of Ar pressure, suggestive of two physical mechanisms at work: an “atomic peening” effect at low Ar pressure and the development of voids at high Ar pressure. We have also carried out correlative studies of the stress and electrical properties (including superconducting critical temperature and residual resistivity) of the film samples, and found that the results are complex. We have made extensive comparisons with the published results, and attempted to explain the discrepancies in terms of film deposition techniques, sample preparation and treatment, and dynamical ranges of measurements. It is fairly clear that the microscopic properties, including porosity and disorder, of Mo films may have significant impact on the correlations.


2021 ◽  
Author(s):  
◽  
Constantin Wassilieff

<p>In some nearly magnetic dilute alloys, in which the host and impurity are transition metals of similar electronic structure, the thermopower is observed to form a "giant" peak at about the spin fluctuation temperature Tsf deduced from resistivity measurements. Two explanations for these peaks have been postulated: the first is that the peaks are a diffusion thermopower component involving scattering off localized spin fluctuations (LSF) at the impurity sites; the second is that they are an LSF drag effect. We examine the thermopower and resistively of two nearly magnetic alloy systems: Rh(Fe) and Pt(Ni). In the first part of this thesis we describe measurements of the low temperature thermopower and resistivity of several Rh(Fe) alloys to clarify discrepancies in previous measurements and we show, by using a modified Nordheim-Gorter analysis, that the observed thermopower peaks are a diffusion and not a drag effect. In the second part of the thesis we describe measurements of the low temperature thermopower and resistivity of Pt (Ni), for which no previous data had been available. The Pt(Ni) samples are manufactured as thin, evaporated films on glass substrates. However, due to the difficulty encountered in controlling the very high residual resistivity of these samples, we are not able to draw definite conclusions regarding either the thermopower or the resistivity.</p>


2021 ◽  
Author(s):  
◽  
Constantin Wassilieff

<p>In some nearly magnetic dilute alloys, in which the host and impurity are transition metals of similar electronic structure, the thermopower is observed to form a "giant" peak at about the spin fluctuation temperature Tsf deduced from resistivity measurements. Two explanations for these peaks have been postulated: the first is that the peaks are a diffusion thermopower component involving scattering off localized spin fluctuations (LSF) at the impurity sites; the second is that they are an LSF drag effect. We examine the thermopower and resistively of two nearly magnetic alloy systems: Rh(Fe) and Pt(Ni). In the first part of this thesis we describe measurements of the low temperature thermopower and resistivity of several Rh(Fe) alloys to clarify discrepancies in previous measurements and we show, by using a modified Nordheim-Gorter analysis, that the observed thermopower peaks are a diffusion and not a drag effect. In the second part of the thesis we describe measurements of the low temperature thermopower and resistivity of Pt (Ni), for which no previous data had been available. The Pt(Ni) samples are manufactured as thin, evaporated films on glass substrates. However, due to the difficulty encountered in controlling the very high residual resistivity of these samples, we are not able to draw definite conclusions regarding either the thermopower or the resistivity.</p>


Author(s):  
Zeyu Zhang ◽  
Xiaohui Shi ◽  
Xiang Liu ◽  
Xia Chen ◽  
Wenbo Mi

Abstract The structure, magnetic and electronic transport properties of epitaxial Mn4N films fabricated by the facing-target reactive sputtering method have been investigated systematically. The high-quality growth of Mn4N films was confirmed by X-ray θ-2θ, pole figures and high-resolution transmission electron microscopy. The Mn4N films exhibit ferrimagnetic with strong perpendicular magnetic anisotropy. The saturation magnetization of Mn4N films decreases with increasing temperature, following the Bloch’s spin wave theory. The resistivity of Mn4N films exhibits metallic conductance mechanism. Debye temperature of Mn4N is estimated to be 85 K. The calculated residual resistivity ρxx0 of the 78.8 nm-thick Mn4N film is 30.56 μΩ cm. The magnetoresistances of Mn4N films display a negative signal and butterfly shape. The sign of anisotropic magnetoresistance (AMR) is positive, which infers that the AMR is dominated by the spin-up conduction electrons. Moreover, the transformation of fourfold to twofold symmetry for AMR and twofold to onefold symmetry for planar Hall resistivity is attributed to tetragonal crystal field effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Uddipta Kar ◽  
Akhilesh Kr. Singh ◽  
Song Yang ◽  
Chun-Yen Lin ◽  
Bipul Das ◽  
...  

AbstractThe growth of SrRuO$$_3$$ 3 (SRO) thin film with high-crystallinity and low residual resistivity (RR) is essential to explore its intrinsic properties. Here, utilizing the adsorption-controlled growth technique, the growth condition of initial SrO layer on TiO$$_2$$ 2 -terminated SrTiO$$_3$$ 3 (STO) (001) substrate was found to be crucial for achieving a low RR in the resulting SRO film grown afterward. The optimized initial SrO layer shows a c(2 $$\times $$ × 2) superstructure that was characterized by electron diffraction, and a series of SRO films with different thicknesses (ts) were then grown. The resulting SRO films exhibit excellent crystallinity with orthorhombic-phase down to $$t \approx $$ t ≈ 4.3 nm, which was confirmed by high resolution X-ray measurements. From X-ray azimuthal scan across SRO orthorhombic (02 ± 1) reflections, we uncover four structural domains with a dominant domain of orthorhombic SRO [001] along cubic STO [010] direction. The dominant domain population depends on t, STO miscut angle ($$\alpha $$ α ), and miscut direction ($$\beta $$ β ), giving a volume fraction of about 92 $$\%$$ % for $$t \approx $$ t ≈ 26.6 nm and $$(\alpha , \beta ) \approx $$ ( α , β ) ≈ (0.14$$^{\mathrm{o}}$$ o , 5$$^{\mathrm{o}}$$ o ). On the other hand, metallic and ferromagnetic properties were well preserved down to t$$\approx $$ ≈ 1.2 nm. Residual resistivity ratio (RRR = $$\rho ({\mathrm{300 K}})$$ ρ ( 300 K ) /$$\rho ({\mathrm{5K}})$$ ρ ( 5 K ) ) reduces from 77.1 for t$$\approx $$ ≈ 28.5 nm to 2.5 for t$$\approx $$ ≈ 1.2 nm, while $$\rho ({\mathrm{5K}})$$ ρ ( 5 K ) increases from 2.5 $$\upmu \Omega $$ μ Ω cm for t$$\approx $$ ≈ 28.5 nm to 131.0 $$\upmu \Omega $$ μ Ω cm for t$$\approx $$ ≈ 1.2 nm. The ferromagnetic onset temperature ($$T'_{\mathrm{c}}$$ T c ′ ) of around 151 K remains nearly unchanged down to t$$\approx $$ ≈ 9.0 nm and decreases to 90 K for t$$\approx $$ ≈ 1.2 nm. Our finding thus provides a practical guideline to achieve high crystallinity and low RR in ultra-thin SRO films by simply adjusting the growth of initial SrO layer.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4810
Author(s):  
Donghui Luo ◽  
Jialun Li ◽  
Yongxing Cao ◽  
Bo Tan ◽  
Wei Li ◽  
...  

Partial discharge of soil occurs when a lightning current enters the ground, and the strength of partial discharge is closely related to the magnitude of its critical breakdown field strength. Therefore, how to accurately obtain the variation law of the typical soil critical breakdown field strength and residual resistivity is the key to realizing the safe operation of the grounding devices and cables in the ground. This paper first selects a variety of typical soils to study the influence of various factors on the morphology of the discharge channel, and then studies the calculation methods of the soil critical breakdown field strength and residual resistivity under the introduction of different discharge channel morphologies and structures, and further discusses the reason why typical soil media factors have a small impact on the critical breakdown field. The experimental results show that under the same conditions, the critical breakdown field strengths of different soils from small to large are sand soil, loam soil and Yellow cinnamon soil. The largest ratio of residual resistivity to initial resistivity of the three soils is sand soil.


2021 ◽  
Vol 118 (32) ◽  
pp. e2105713118
Author(s):  
William Nunn ◽  
Anusha Kamath Manjeshwar ◽  
Jin Yue ◽  
Anil Rajapitamahuni ◽  
Tristan K. Truttmann ◽  
...  

Advances in physical vapor deposition techniques have led to a myriad of quantum materials and technological breakthroughs, affecting all areas of nanoscience and nanotechnology which rely on the innovation in synthesis. Despite this, one area that remains challenging is the synthesis of atomically precise complex metal oxide thin films and heterostructures containing “stubborn” elements that are not only nontrivial to evaporate/sublimate but also hard to oxidize. Here, we report a simple yet atomically controlled synthesis approach that bridges this gap. Using platinum and ruthenium as examples, we show that both the low vapor pressure and the difficulty in oxidizing a “stubborn” element can be addressed by using a solid metal-organic compound with significantly higher vapor pressure and with the added benefits of being in a preoxidized state along with excellent thermal and air stability. We demonstrate the synthesis of high-quality single crystalline, epitaxial Pt, and RuO2 films, resulting in a record high residual resistivity ratio (=27) in Pt films and low residual resistivity, ∼6 μΩ·cm, in RuO2 films. We further demonstrate, using SrRuO3 as an example, the viability of this approach for more complex materials with the same ease and control that has been largely responsible for the success of the molecular beam epitaxy of III-V semiconductors. Our approach is a major step forward in the synthesis science of “stubborn” materials, which have been of significant interest to the materials science and the condensed matter physics community.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 835
Author(s):  
Lik Nguong Lau ◽  
Kean Pah Lim ◽  
See Yee Chok ◽  
Amirah Natasha Ishak ◽  
Xiao Tong Hon ◽  
...  

Incorporation of the secondary oxide phase into the manganite composite capable of enhancing low-field magnetoresistance (LFMR) for viability in high-performance spintronic applications. Polycrystalline La0.67Ca0.33MnO3 (LCMO) was prepared via the sol–gel route in this study. The structural, microstructural, magnetic, electrical, and magneto-transport properties of (1−x) LCMO: x NiO, x = 0.00, 0.05, 0.10, 0.15 and 0.20 were investigated in detail. The X-ray diffraction (XRD) patterns showed the coexistence of LCMO and NiO in the composites. The microstructural analysis indicated the amount of NiO nanoparticles segregated at the grain boundaries or on the surface of LCMO grains increased with the increasing secondary phase content. LCMO and NiO still retained their individual magnetic phase as observed from AC susceptibility (ACS) measurement. This further confirmed that there is no interfacial diffusion reaction between these two compounds. The NiO nanoparticle acted as a barrier to charge transport and caused an increase in resistivity for composite samples. The residual resistivity due to the grain/domain boundary is responsible for the scattering mechanism in the metallic region as suggested by the theoretical model fitting, ρ(T)=ρ0+ρ2T2+ρ4.5T4.5. The magnetoresistance values of LCMO and its composites were found to increase monotonically with the decrease in temperature. Hence, the LFMR was observed. Nonetheless, the slight reduction of LFMR in composites was attributed to the thick boundary layer created by NiO and impaired the spin polarised tunnelling process.


Sign in / Sign up

Export Citation Format

Share Document