scholarly journals Cycle Time Reduction in Automotive Manufacturing

Author(s):  
Wesam Ali Husien ◽  
Waleed Khalid Abduljabbar ◽  
Saba Noori Attallh

Today, there are a lot of problems occur in the Automotive Component Manufacturer Company. Amongst them, work not standardized on each process is the most serious one. Standardization work can help reduce the amount of time to complete the task without defects by efficiently guiding the operators. Other related problems include machines fail to clamp semi-finished products to the next station, stopper loose, and rework process which cause the car carpet size to miss the standards. All these common problems increased the cycle time of the car carpet assembly line. So, this study was aimed to investigate how to reduce cycle time of the car carpet assembly line in the Automotive Component Manufacturer Company which located at Port Klang area. Data was collected through interview and observation. To reduce the cycle time of the car carpet assembly line, Kaizen activity and line balancing are implemented. Kaizen is the continuous improvement process. Line balancing is used to manage the workloads among assemblers, to determine number of workstation and to reduce production cost of the company. The derived results show that the cycle time of the car carpet assembly line is reduced from 313 seconds to 131 seconds. This proves that kaizen activities and line balancing do improve the productivity up to 58%. However, to achieve more successful and effective improvement, further work standardization on each process is needed.

2014 ◽  
Vol 13 (02) ◽  
pp. 113-131 ◽  
Author(s):  
P. Sivasankaran ◽  
P. Shahabudeen

Balancing assembly line in a mass production system plays a vital role to improve the productivity of a manufacturing system. In this paper, a single model assembly line balancing problem (SMALBP) is considered. The objective of this problem is to group the tasks in the assembly network into a minimum number of workstations for a given cycle time such that the balancing efficiency is maximized. This problem comes under combinatorial category. So, it is essential to develop efficient heuristic to find the near optimal solution of the problem in less time. In this paper, an attempt has been made to design four different genetic algorithm (GA)-based heuristics, and analyze them to select the best amongst them. The analysis has been carried out using a complete factorial experiment with three factors, viz. problem size, cycle time, and algorithm, and the results are reported.


2015 ◽  
Vol 799-800 ◽  
pp. 1398-1402 ◽  
Author(s):  
Jongrak Niamsawan ◽  
Suksan Prombanpong

This research objective is to improve the productivity of cookware assembly line by means of time and distance reductions. The motion study and line balancing techniques were applied to the entire assembly operations. A bottle neck was identified to where the operation with inadequate machine layout and workplace organization, including the unbalanced workloads. The new workplace layout and new working method for operators were designed and implemented as well as balancing the assembly line. Specifically, the conveyor speed and duration between the consecutive workpieces in the production line were adjusted to 0.10 m/s and 50 cm, respectively. The number of operators needed in the process can be reduced from 14 persons to 11 persons. The cycle time for assembling process is decreased from 12 to 5 second.


2013 ◽  
Vol 816-817 ◽  
pp. 1169-1173
Author(s):  
Usman Attique ◽  
Abdul Ghafoor ◽  
Riaz Ahmed ◽  
Shahid Ikramullah

Various exact and heuristic methods have been proposed for assembly line balancing problem (ALBP) but unequal multiple operators have not been considered much. In this paper we present a novel approach of assembly line balancing Type-2 with unequal multiple operators by using an already developed code in Matlab (Tomlab modeling platform). The adopted approach can be applied at line balancing problems ranging from few to hundreds of work elements to achieve minimum cycle time with very less computational effort.


Author(s):  
Konstantinos N. Genikomsakis ◽  
◽  
Vassilios D. Tourassis

Assembly Line Balancing (ALB) aims at optimally assigning the work elements required to assemble a product to an ordered sequence of workstations, while satisfying precedence constraints. Notwithstanding the advances and developments in ALB over the years, recent and thorough surveys on this field reveal that only a small percentage of companies employ ALB procedures to configure their assembly lines. This paradox may be attributed, to some extent, to the fact that ALB is addressed mostly under ideal conditions. Despite the time variability inherent in manufacturing tasks, there is a strong research trend towards designing and implementing algorithms that consider ALB on a deterministic basis and focus on the optimality of the proposed task assignments according to existing ALB performance measures. In this paper, the need to assess the performance of the proposed solutions of various algorithms in the literature is corroborated through simulation experiments on a benchmark ALB problem under more realistic conditions. A novel ALB index, namely the Effective Cycle Time, ECT, is proposed to assess the quality of alternative assembly line configurations in paced assembly lines operating under task times variations.


2012 ◽  
Vol 576 ◽  
pp. 700-704 ◽  
Author(s):  
Hartini Mustafa ◽  
Ahmad Razlan Yusoff ◽  
M. Yusoff Ismail

Assembly line balancing is assumed to have fixed task within specified task time during the initial stage of the mass production. The problem of current case study of this assembly line was the production line cannot meet the expected output plan with imbalance station cycle time. In this paper, productivity study and line balancing is applied to improve production line of GGMG & CALICO. The desired cycle time defined using the Standard Time Data (STD) which required the person to perform assign task till completion by defining the performance rating of person. The proposed solution proved by the implementation analysis conducted in the research. The results showed that the productivity of production line which is tremendously increased within 50% after implementation. There are six factors identified during the study which are bottleneck stations, workpiece flow, line layout, ergonomic, resource assignment and buffer allocation.


2015 ◽  
Vol 761 ◽  
pp. 104-108
Author(s):  
Adi Saptari ◽  
Jia Xin Leau ◽  
M. Nor Akramin

In Line Balancing principles, the total workload in the assembly process is divided as evenly as possible among the workstations, without violating the sequences and relations in the assembly operations. Line balancing is important in an assembly system as it balances the line and increases the efficiency, as well as the productivity of a system. A case study was conducted in the assembly line of an electrical accessories manufacturer in Malaysia. The cycle time for each station was recorded, and the standard cycle time was estimated. The productivity, as well as the efficiency of the current assembly line, were studied. In terms of the productivity, the performance of the current systems was 500 units/worker/day, while the expected productivity was 600 units/worker/day. An assembly line setting was proposed based on the Line Balancing Method; the productivity for the proposed line increased to 671 units/worker/day, or in rough additional increase around 34%.


Informatica ◽  
2020 ◽  
Vol 44 (2) ◽  
Author(s):  
Huong Mai Dinh ◽  
Dung Viet Nguyen ◽  
Long Van Truong ◽  
Thuan Phan Do ◽  
Thao Thanh Phan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document