scholarly journals A Simplified Ground Thermal Response Model for Analyzing Solar-Assisted Ground Source Heat Pump Systems

2021 ◽  
Author(s):  
Jamie P. Fine ◽  
Hiep V. Nguyen ◽  
Jacob Friedman ◽  
Wey H. Leong ◽  
Seth B. Dworkin

Ground source heat pump systems that are installed in areas with heating or cooling dominant seasons, or in buildings with utilization characteristics that lead to a disparity in demand, often encounter challenges related to ground thermal imbalance. This imbalance can lead to long-term ground temperature changes and may cause premature system failure. This paper focuses on combining a ground source heat pump system with a solar thermal array, with the goal of eliminating the effect of ground thermal imbalance, and minimizing system lifetime cost. A thermal mass ground heat transfer model is combined with a time-stepping model to analyze the system for a variety of solar array sizes. The details associated with this modelling technique are presented, and case studies are provided to illustrate the results of the calculations for three different buildings. It is shown that increasing the solar array size can offset ground thermal imbalances, but increasing the array size also results in a larger initial system cost. An economic analysis is then carried out to determine the system lifetime cost as a function of this solar array size, and an optimal array size from an economic perspective was found. The result of the study shows that hybridizing a ground source heat pump system with a solar array produces a viable system from a technical and economic standpoint, can be used to avoid premature system failure, and can reduce system lifetime cost.

2021 ◽  
Author(s):  
Jamie P. Fine ◽  
Hiep V. Nguyen ◽  
Jacob Friedman ◽  
Wey H. Leong ◽  
Seth B. Dworkin

Ground source heat pump systems that are installed in areas with heating or cooling dominant seasons, or in buildings with utilization characteristics that lead to a disparity in demand, often encounter challenges related to ground thermal imbalance. This imbalance can lead to long-term ground temperature changes and may cause premature system failure. This paper focuses on combining a ground source heat pump system with a solar thermal array, with the goal of eliminating the effect of ground thermal imbalance, and minimizing system lifetime cost. A thermal mass ground heat transfer model is combined with a time-stepping model to analyze the system for a variety of solar array sizes. The details associated with this modelling technique are presented, and case studies are provided to illustrate the results of the calculations for three different buildings. It is shown that increasing the solar array size can offset ground thermal imbalances, but increasing the array size also results in a larger initial system cost. An economic analysis is then carried out to determine the system lifetime cost as a function of this solar array size, and an optimal array size from an economic perspective was found. The result of the study shows that hybridizing a ground source heat pump system with a solar array produces a viable system from a technical and economic standpoint, can be used to avoid premature system failure, and can reduce system lifetime cost.


2014 ◽  
Vol 507 ◽  
pp. 475-479
Author(s):  
Xin Dai ◽  
Lu Liu

This template comprehensive analysis of the causes of soil heat balance, heat balance of soil caused by the results, heat balance of soil factors influence, several domestic thermal imbalance of soil heat balance and common measures to solve the problem, for the future of the soil source heat pump system design for the constructive suggestion.


2013 ◽  
Vol 805-806 ◽  
pp. 587-590
Author(s):  
Yi Yu ◽  
Yu Yun Li ◽  
Yong Ma ◽  
Xian Fang Hu

In order to improve the scientificity and accuracy of ground source heat pump energy efficiency testing, the paper discusses the principles and methods of energy efficiency testing, the requirements of the testing instruments' selection and installation and the arrangement of measuring points.The paper shows how to diagnosis instruments and process system failure according to the concrete situation on site,and points out the methods of systematic troubleshooting and fault elimination.


Solar Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 10-29
Author(s):  
Bo Xiang ◽  
Yasheng Ji ◽  
Yanping Yuan ◽  
Chao Zeng ◽  
Xiaoling Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document