scholarly journals A HOLISTIC APPROACH TO AND AUTOMATION OF WIDE AREA PROTECTION COORDINATION

Author(s):  
Saman Alaeddini

The electric power transmission network of today is undergoing significant changes in terms of the operational requirements, connected distributed energy resources technologies, and regulatory requirements. In conjunction with an aging infrastructure, these changes have presented new challenges to utilities in their fundamental mission of providing reliable electrical power to the customers. Thus, protection systems must overcome additional challenges towards safe and reliable operation of the power system. Increased investigation of protection system performance is therefore needed to ensure proper coordination of protective relays. However, the complex and integrated nature of the modern protection and control systems call for more sophisticated modeling and study tools for the simulation and analysis of both the dynamics of the interconnected transmission systems and interactions among numerous sets of intelligent electronic devices. Although the protection technology designed for transmission systems is mature, coordination of devices is still a major challenge. This thesis presents a holistic approach to conducting wide-area protection coordination studies through the use of a practical automation-assisted methodology. The wide area protection coordination solution covers process and data management considerations. It also provides a framework workflow for the execution and review of coordination studies, as well as processing and documentation of results to support reliability improvements. The fundamental concept behind the proposed approach is the utilization of software-based automation in a number of key tasks. Firstly, the execution of large-scale protection system coordination studies can be largely automated through utilization of specialized scripts running within short circuit simulation software packages. Secondly, the vast amounts of data inherent in the protection system coordination study results are processed in a manner that assists protection engineers in the identification and resolution of coordination issues. Finally, user friendly automated study summaries are generated that can be used as a record of protection setting recommendations. The effectiveness of the proposed solution is demonstrated through simulations conducted in the CAPE software environment for short circuit studies. Keywords: Protection and Control, Protection Coordination, Power System Reliability, Wide Area Protection Coordination, WAPC.

2021 ◽  
Author(s):  
Saman Alaeddini

The electric power transmission network of today is undergoing significant changes in terms of the operational requirements, connected distributed energy resources technologies, and regulatory requirements. In conjunction with an aging infrastructure, these changes have presented new challenges to utilities in their fundamental mission of providing reliable electrical power to the customers. Thus, protection systems must overcome additional challenges towards safe and reliable operation of the power system. Increased investigation of protection system performance is therefore needed to ensure proper coordination of protective relays. However, the complex and integrated nature of the modern protection and control systems call for more sophisticated modeling and study tools for the simulation and analysis of both the dynamics of the interconnected transmission systems and interactions among numerous sets of intelligent electronic devices. Although the protection technology designed for transmission systems is mature, coordination of devices is still a major challenge. This thesis presents a holistic approach to conducting wide-area protection coordination studies through the use of a practical automation-assisted methodology. The wide area protection coordination solution covers process and data management considerations. It also provides a framework workflow for the execution and review of coordination studies, as well as processing and documentation of results to support reliability improvements. The fundamental concept behind the proposed approach is the utilization of software-based automation in a number of key tasks. Firstly, the execution of large-scale protection system coordination studies can be largely automated through utilization of specialized scripts running within short circuit simulation software packages. Secondly, the vast amounts of data inherent in the protection system coordination study results are processed in a manner that assists protection engineers in the identification and resolution of coordination issues. Finally, user friendly automated study summaries are generated that can be used as a record of protection setting recommendations. The effectiveness of the proposed solution is demonstrated through simulations conducted in the CAPE software environment for short circuit studies. Keywords: Protection and Control, Protection Coordination, Power System Reliability, Wide Area Protection Coordination, WAPC.


Author(s):  
Adeyemi Charles Adewole ◽  
Raynitchka Tzoneva

The renewed quest for situational awareness in power systems has brought about the use of digital signal processing of power system measurements, and the transmission of such data to control centres via communication networks. At the control centres, power system stability algorithms are executed to provide monitoring, protection, and control in order to prevent blackouts. This can be achieved by upgrading the existing Supervisory Control and Data Acquisition (SCADA) systems through the deployment of newly proposed power system synchrophasor-based applications for Wide Area Monitoring, Protection, and Control (WAMPAC). However, this can only be done when there is a complete understanding of the methods and technologies associated with the communication network, message structure, and formats required. This paper presents an analysis of the IEEE C37.118 synchrophasor message framework, message formats, and data communication of synchrophasor measurements from Phasor Measurement Units (PMUs) for WAMPAC schemes in smart grids. A newly designed lab-scale testbed is implemented and used in the practical experimentation relating to this paper. Synchrophasor measurements from the PMUs are captured using a network protocol analyzer software-Wireshark, and the compliance of the synchrophasor message structures and formats captured was compared to the specifications defined in the IEEE C37.118 synchrophasor standard.


2015 ◽  
Vol 03 (04) ◽  
pp. 412-416 ◽  
Author(s):  
Z. Q. Bo ◽  
Q. P. Wang ◽  
Lin Wang ◽  
Fengqun Zhou ◽  
Shengming Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document