scholarly journals A numerical study of free convective heat transfer within domed skylight cavities

2021 ◽  
Author(s):  
AmirAbbas Sartipi

Domed skylights are important architectural design elements to deliver daylight and solar heat into buildings and connect buildings' occupants to outdoors. To increase the energy efficiency of skylighted buildings, domed skylights employ a number of glazing layers forming enclosed spaces. The latter are subject to complex buoyancy-induced convection heat transfer. Currently, existing fenestration design computer tools and building energy simulation programs do not, however, cover such skylights to quantify their energy performance when installed in buildings. his work presents a numerical study on natural laminar convection within concentric and vertically eccentric domed cavities. The edges of domed cavities are assumed adiabatic and the temperature of the interior and exterior surfaces are uniform and constant. The concentric and vertically eccentric domed cavities were studied when heated from inside and heated from outside, respectively. A commercial CFD package employing the control volume approach is used to solve the laminar convective heat transfer within the cavity. The obtained results showed steady flow for small Grashof numbers. For moderate and large Grashof numbers, depending on the gap ratio and the cases of heating from inside or outside, the flow may be steady or transient periodic with a single vortex-cell or multi vortex-cells. The Nusselt number for the case of heated from inside is greater than the case of heated from outside. The numerical results show that the changes in the gap ratio have smaller effect on Nusselt number in high profile domed skylights than lower profile domed skylights.

2021 ◽  
Author(s):  
AmirAbbas Sartipi

Domed skylights are important architectural design elements to deliver daylight and solar heat into buildings and connect buildings' occupants to outdoors. To increase the energy efficiency of skylighted buildings, domed skylights employ a number of glazing layers forming enclosed spaces. The latter are subject to complex buoyancy-induced convection heat transfer. Currently, existing fenestration design computer tools and building energy simulation programs do not, however, cover such skylights to quantify their energy performance when installed in buildings. his work presents a numerical study on natural laminar convection within concentric and vertically eccentric domed cavities. The edges of domed cavities are assumed adiabatic and the temperature of the interior and exterior surfaces are uniform and constant. The concentric and vertically eccentric domed cavities were studied when heated from inside and heated from outside, respectively. A commercial CFD package employing the control volume approach is used to solve the laminar convective heat transfer within the cavity. The obtained results showed steady flow for small Grashof numbers. For moderate and large Grashof numbers, depending on the gap ratio and the cases of heating from inside or outside, the flow may be steady or transient periodic with a single vortex-cell or multi vortex-cells. The Nusselt number for the case of heated from inside is greater than the case of heated from outside. The numerical results show that the changes in the gap ratio have smaller effect on Nusselt number in high profile domed skylights than lower profile domed skylights.


Author(s):  
Patrick H. Oosthuizen

A numerical study of natural convective heat transfer from an upward facing, heated horizontal isothermal surface imbedded in a large flat adiabatic surface has been undertaken. On the heated surface is a series of triangular shaped waves. Laminar, transitional, and turbulent flow conditions have been considered. The flow has been assumed to be two-dimensional and steady. The fluid properties have been assumed constant except for the density change with temperature giving rise to the buoyancy forces. This was with treated using the Boussinesq approach. The numerical solution has been obtained using the commercial CFD solver ANSYS FLUENT©. The k-epsilon turbulence model with full account being taken of buoyancy force effects has been employed. The heat transfer rate from the heated surface expressed in terms of a Nusselt number is dependent on the Rayleigh number, the number of waves, the height of the waves relative to the width of the heated surface, and the Prandtl number. This study obtained results for a Prandtl number of 0.74 which is effectively the value for air. An investigation of the effect of the Rayleigh number, the dimensionless height of the surface waves, and the number of surface waves on the Nusselt number has been undertaken.


2020 ◽  
Vol 31 (04) ◽  
pp. 2050061
Author(s):  
A. Baïri ◽  
A. Martín-Garín ◽  
J. A. Millán-García

This numerical study quantifies the natural convective heat transfer occurring in an elongated rectangular cavity whose hot vertical wall generates a constant heat flux while the opposite one is kept isothermal at cold temperature. The study shows that when a layer of porous material is affixed to the hot wall, the aerodynamic phenomena are modified and increase the natural convective transfer. Several configurations were processed, obtained by varying the matrix’s thermal conductivity of the layer, the aspect ratio of the cavity and the Rayleigh number in wide ranges. The numerical solution is obtained by means of the control volume method based on the SIMPLE algorithm. A correlation of the Nusselt–Rayleigh type is proposed, allowing determination of the convective heat transfer for any combination of these physical parameters. It can be applied in various engineering fields including passive heating in building which can be improved by the simple and easy-to-implement assembly version discussed here.


Author(s):  
Patrick H. Oosthuizen

Natural convective heat transfer from a vertical isothermal cylinder mounted on a flat adiabatic base has been numerically studied. The cylinder has an exposed top surface. The cylinder is relatively very short, i.e., has a height that is equal to or less than the cylinder diameter. Both the cases where the cylinder is pointing upward and where it is pointing downward have been considered. The governing equations have been numerically solved using the commercial CFD solver ANSYS FLUENT©. Results have only been obtained for Prandtl number = 0.74. The mean heat transfer rates have been expressed in terms of a Nusselt number, consideration being given both to the heat transfer rate from the entire cylinder surface and to the heat transfer rates from the side and top surfaces of the cylinder. The effect of the dimensionless cylinder height–to–diameter ratio on the Nusselt number variation has been studied in detail.


Sign in / Sign up

Export Citation Format

Share Document