scholarly journals A content-based image retrieval system for hat database

2021 ◽  
Author(s):  
Danhua Li

Content-based image retrieval (CBIR) is a technique for indexing and retrieving images based on the low-level features, middle-level features, and high-level features. Low-level feature is extracted from contents of the images such as color, texture and shape; middle-level feature is a region obtained as a result of image segmentation; high-level feature is semantic information about the meaning of image, its objects and their roles, and categories to which the image belongs. In this project, three low-level features texture-based retrieval, color-based retrieval and shape-based retrieval are implemented and compared on hat database. Texture features are obtained from parameters of a two-component Gaussian mixture model (GMM) in the wavelet domain. Color features are extracted from a two-component GMM on HLS color space. Shape features are extracted from the contour by using centroid-contour distance Fourier descriptor. A comprehensive experimental evaluation of the retrieval performance of different feature sets is performed. The experimental results indicate that the shape features based on the centroid-contour distance Fourier descriptor perform much better than the color and texture features for the hat database used in this project

2021 ◽  
Author(s):  
Danhua Li

Content-based image retrieval (CBIR) is a technique for indexing and retrieving images based on the low-level features, middle-level features, and high-level features. Low-level feature is extracted from contents of the images such as color, texture and shape; middle-level feature is a region obtained as a result of image segmentation; high-level feature is semantic information about the meaning of image, its objects and their roles, and categories to which the image belongs. In this project, three low-level features texture-based retrieval, color-based retrieval and shape-based retrieval are implemented and compared on hat database. Texture features are obtained from parameters of a two-component Gaussian mixture model (GMM) in the wavelet domain. Color features are extracted from a two-component GMM on HLS color space. Shape features are extracted from the contour by using centroid-contour distance Fourier descriptor. A comprehensive experimental evaluation of the retrieval performance of different feature sets is performed. The experimental results indicate that the shape features based on the centroid-contour distance Fourier descriptor perform much better than the color and texture features for the hat database used in this project


2014 ◽  
Vol 536-537 ◽  
pp. 127-130
Author(s):  
Kun Geng

Based on the shape of the image retrieval occupy an important position in the content-based image retrieval, and studied architecture, content-based image retrieval system, ie research-based image retrieval key technologies shape features for image noise in addition to the morphological processing; image segmentation; shape-based feature extraction and regional boundaries and description techniques and similarity measure techniques. The results show that the algorithm can effectively identify the characteristics of the image.


Author(s):  
Priyesh Tiwari ◽  
Kulwant Singh ◽  
Shivendra Nath Sharan ◽  
Shiv Narain Gupta

Author(s):  
Alan Wee-Chung Liew ◽  
Ngai-Fong Law

With the rapid growth of Internet and multimedia systems, the use of visual information has increased enormously, such that indexing and retrieval techniques have become important. Historically, images are usually manually annotated with metadata such as captions or keywords (Chang & Hsu, 1992). Image retrieval is then performed by searching images with similar keywords. However, the keywords used may differ from one person to another. Also, many keywords can be used for describing the same image. Consequently, retrieval results are often inconsistent and unreliable. Due to these limitations, there is a growing interest in content-based image retrieval (CBIR). These techniques extract meaningful information or features from an image so that images can be classified and retrieved automatically based on their contents. Existing image retrieval systems such as QBIC and Virage extract the so-called low-level features such as color, texture and shape from an image in the spatial domain for indexing. Low-level features sometimes fail to represent high level semantic image features as they are subjective and depend greatly upon user preferences. To bridge the gap, a top-down retrieval approach involving high level knowledge can complement these low-level features. This articles deals with various aspects of CBIR. This includes bottom-up feature- based image retrieval in both the spatial and compressed domains, as well as top-down task-based image retrieval using prior knowledge.


2018 ◽  
Vol 14 (2) ◽  
pp. 90-102 ◽  
Author(s):  
Hanan Al-Jubouri ◽  
Hongbo Du

Content-Based Image Retrieval (CBIR) is an automatic process of retrieving images that are the most similar to a query image based on their visual content such as colour and texture features. However, CBIR faces the technical challenge known as the semantic gap between high level conceptual meaning and the low-level image based features. This paper presents a new method that addresses the semantic gap issue by exploiting cluster shapes. The method first extracts local colours and textures using Discrete Cosine Transform (DCT) coefficients. The Expectation-Maximization Gaussian Mixture Model (EM/GMM) clustering algorithm is then applied to the local feature vectors to obtain clusters of various shapes. To compare dissimilarity between two images, the method uses a dissimilarity measure based on the principle of Kullback-Leibler divergence to compare pair-wise dissimilarity of cluster shapes. The paper further investigates two respective scenarios when the number of clusters is fixed and adaptively determined according to cluster quality. Experiments are conducted on publicly available WANG and Caltech6 databases. The results demonstrate that the proposed retrieval mechanism based on cluster shapes increases the image discrimination, and when the number of clusters is fixed to a large number, the precision of image retrieval is better than that when the relatively small number of clusters is adaptively determined.


Author(s):  
Silvester Tena ◽  
Rudy Hartanto ◽  
Igi Ardiyanto

In <span>recent years, a great deal of research has been conducted in the area of fabric image retrieval, especially the identification and classification of visual features. One of the challenges associated with the domain of content-based image retrieval (CBIR) is the semantic gap between low-level visual features and high-level human perceptions. Generally, CBIR includes two main components, namely feature extraction and similarity measurement. Therefore, this research aims to determine the content-based image retrieval for fabric using feature extraction techniques grouped into traditional methods and convolutional neural networks (CNN). Traditional descriptors deal with low-level features, while CNN addresses the high-level, called semantic features. Traditional descriptors have the advantage of shorter computation time and reduced system requirements. Meanwhile, CNN descriptors, which handle high-level features tailored to human perceptions, deal with large amounts of data and require a great deal of computation time. In general, the features of a CNN's fully connected layers are used for matching query and database images. In several studies, the extracted features of the CNN's convolutional layer were used for image retrieval. At the end of the CNN layer, hash codes are added to reduce  </span>search time.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Stelios A. Mitilineos ◽  
Stelios M. Potirakis ◽  
Nicolas-Alexander Tatlas ◽  
Maria Rangoussi

STORM is an ongoing European research project that aims at developing an integrated platform for monitoring, protecting, and managing cultural heritage sites through technical and organizational innovation. Part of the scheduled preventive actions for the protection of cultural heritage is the development of wireless acoustic sensor networks (WASNs) that will be used for assessing the impact of human-generated activities as well as for monitoring potentially hazardous environmental phenomena. Collected sound samples will be forwarded to a central server where they will be automatically classified in a hierarchical manner; anthropogenic and environmental activity will be monitored, and stakeholders will be alarmed in the case of potential malevolent behavior or natural phenomena like excess rainfall, fire, gale, high tides, and waves. Herein, we present an integrated platform that includes sound sample denoising using wavelets, feature extraction from sound samples, Gaussian mixture modeling of these features, and a powerful two-layer neural network for automatic classification. We contribute to previous work by extending the proposed classification platform to perform low-level classification too, i.e., classify sounds to further subclasses that include airplane, car, and pistol sounds for the anthropogenic sound class; bird, dog, and snake sounds for the biophysical sound class; and fire, waterfall, and gale for the geophysical sound class. Classification results exhibit outstanding classification accuracy in both high-level and low-level classification thus demonstrating the feasibility of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document