Effects of D0-stage temperature, pH, and kappa factor on chlorine dioxide decomposition and D0-(EP)-D1 bleaching performance for eucalypt pulps

TAPPI Journal ◽  
2016 ◽  
Vol 15 (4) ◽  
pp. 285-295 ◽  
Author(s):  
UMIT SEZGI ◽  
JANAINA RESENDE ◽  
LEWIS SHACKFORD ◽  
JORGE COLODETTE ◽  
MARCELA ANDRADE

Mills have largely used chlorine dioxide (ClO2) for eucalyptus kraft pulp bleaching. Different mills have observed significant variation in ClO2 demand to reach full brightness (≥90 ISO). These large differences in ClO2 consumption derive from many factors. The most significant include differences in carryover loads and hexenuronic acid (HexA) contents and the level of chlorate formation across bleaching. Handling of pulp with high HexA content and ClO2 losses to chlorate can be minimized by proper operation of the ClO2 stages across the bleach plant. An oxygen delignified eucalyptus kraft pulp with a kappa of 10-12 units contains only 4-6 units actually derived from lignin. This scarce amount of lignin (0.6%-0.9%) is not able to consume high ClO2 doses and, as a consequence, the excess ClO2 applied can end up being converted into chlorate. Hence, proper optimization of ClO2 bleaching stages can save significant amounts of this oxidant. This study focused on optimizing ClO2 bleaching for a typical oxygen delignified eucalyptus kraft pulp of kappa number 11.7. Elemental chlorine free bleaching was carried out with the D0-(EP)-D1 sequence. The following conditions were varied in the D0 stage: temperature, end pH, and kappa factor. The results indicated that maximum ClO2 bleaching efficiency is achieved when minimum chlorate is formed, especially when ClO2 bleaching is adjusted in such a way that residual active chlorine is maintained to a minimum. The most significant variable affecting chlorate formation is pH; however, ClO2 doses (ClO2 concentration) also play a very important role. Chlorate formation is more intense in the D1 stage in relation to the D0 stage. Optimum conditions to run the D0 stage were 90°C, 3.5 pH, and 0.22 kappa factor.

TAPPI Journal ◽  
2010 ◽  
Vol 9 (8) ◽  
pp. 27-35 ◽  
Author(s):  
BRIAN N. BROGDON

The present investigation meticulously analyzes how oxidative alkaline extraction can be augmented through process changes, and how these augmentations can be leveraged to optimize chlorine dioxide usage with elemental chlorine-free (ECF) sequences for a conventional softwood kraft pulp. Bleaching data from Basta and co-workers (1992 TAPPI Pulping Conference) are re-examined and re-interpreted in this study. We determined that ~60% to 65% of the overall ClO2 charge should be applied in the D0-stage. Peroxide addition to an (EOP) can replace 0.6 to 2.5 Kg. ClO2 per Kg H2O2. Boosting the (EO) temperature to 80°C is equivalent to a 70°C (EOP) with 0.25% to 0.30% H2O2,whereas a 90°C (EO) is equivalent to 0.50% – 0.75% H2O2 in a 70°C (EOP). The stoichiometric bleaching data from this study can guide decision-making for lowering chemical usage and minimize costs to reach target brightness levels with three- and five-stage sequences.


BioResources ◽  
2006 ◽  
Vol 1 (1) ◽  
pp. 34-44 ◽  

The delignification efficiency of different laccase enzymes was examined on the eucalyptus Kraft pulp. The laccase enzyme from Trametes versicolor showing the highest delignification efficiency was selected and used in the elemental chlorine-free bleaching sequence for improving the pulp bleachability. A n appreciable reduction in chlorine dioxide consumption was also obtained. Further reduction in chlorine dioxide consumption was obtained when the same laccase treated pulp was subjected to an acid treatment after the extraction stage followed by the DE P D sequence. Elemental-chlorine free bleaching was also performed using the xylanase-laccase treated pulp. Xylanase treatment was incorporated to the laccase mediator system in the elemental-chlorine free bleaching both sequentially and simultaneously. The bleaching sequence DE P D followed and in both the cases, the reduction in chlorine dioxide consumption was greater in comparison to the control. The chlorine dioxide consumption was reduced further when xylanase-laccase treated pulp was given an additional acid treatment. The final pulp properties of the treated pulps were comparable to the control pulp.


Holzforschung ◽  
2003 ◽  
Vol 57 (5) ◽  
pp. 503-512 ◽  
Author(s):  
C. S. R. Freire ◽  
A. J. D. Silvestre ◽  
C. Pascoal Neto

Summary The structural changes of E. globulus wood extractives during bleaching with chlorine dioxide (D), oxygen (O), ozone (Z) and hydrogen peroxide (P) were studied. The detailed characterisation of the extractive derivatives detected in the partially bleached D, O, P and Z pulps was achieved by performing reactions of pure reference compounds with the different bleaching agents. The results show that the unsaturated sterols and fatty acids are extensively degraded during chlorine dioxide and ozone bleaching and only partially degraded during oxygen and hydrogen peroxide bleaching. The corresponding saturated extractives as well as the long chain aliphatic alcohols and ω-hydroxyfatty acids were stable during bleaching. The main oxidation products of β-sitosterol and oleic and linoleic acids, including one chlorinated derivative of linoleic acid, were identified here for the first time in E. globulus bleached pulps and bleaching filtrates.


2017 ◽  
Vol 52 (4) ◽  
pp. 247-252 ◽  
Author(s):  
M Sarwar Jahan ◽  
MM Uddin ◽  
MA Kashem

Elemental Chlorine Free (ECF) pulp bleaching is now the dominant pulp bleaching process in globally. In most bleachery, chlorine dioxide is over-consumed. About two thirds of the chlorine dioxide is wasted in useless side reactions. In the study, kraft pulp from Gmelina arborea (gamar wood) was bleached by ECF bleaching in modified sequences. Oxygen prebleaching was carried out to decrease ClO2 requirement, which reduced kappa number of kraft pulp by 47.6% and increased pulp brightness by 21.7 percent points. Several sequences were tested based on the application of limited charges of ClO2 during successive ClO2and extraction stage. Application of this concept allowed a 33% reduction of ClO2 to reach target brightness. The kraft pulp could not reach target brightness of 80% in DED sequences using even 30 kg ClO2/ton of pulp, while splitting of same amount of ClO2 charge into DEDED sequences reached the pulp brightness to 81.1%. But oxygen delignified kaft pulp reached 79.6% brightness using 25 kg ClO2/ton of pulp in DED sequences. In the splitting of ClO2 charge into DEDED sequences, Oxygen pulp reached to 85% brightness by using only 20 kg ClO2/ton pulp.Bangladesh J. Sci. Ind. Res. 52(4), 247-252, 2017


Holzforschung ◽  
2000 ◽  
Vol 54 (4) ◽  
pp. 407-412 ◽  
Author(s):  
L. Kühne ◽  
J. Odermatt ◽  
T. Wachter

Summary A binuclear [Mn(III)Mn(IV)(μ-O)2(μ-CH3COO)L](ClO4−)2 complex with L = 1,2 Bis-(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)-ethane, described as a selective catalyst in hydrogen peroxide bleaching of softwood pulps, was tested in hardwood kraft pulp bleaching. The catalyst application gave rise to a higher consumption of peroxide which resulted in higher pulp brightness. The delignification improvement caused by the catalyst was shown to be much lower compared to catalysed peroxide bleaching of softwood kraft pulp. In contrast to the results of softwood pulp bleaching no selectivity improvements could be found when using the catalyst in bleaching of eucalyptus kraft pulp.


Sign in / Sign up

Export Citation Format

Share Document