scholarly journals Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology

TAPPI Journal ◽  
2021 ◽  
Vol 20 (11) ◽  
pp. 695-708
Author(s):  
TATU PITKÄNEN

An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.

2010 ◽  
Vol 82 (5) ◽  
pp. 055402 ◽  
Author(s):  
Payal Mehta ◽  
Arun Sarma ◽  
Joydeep Ghosh ◽  
Shwetang Pandya ◽  
Santosh Pandya ◽  
...  

2010 ◽  
Vol 22 (7) ◽  
pp. 1449-1452
Author(s):  
卜令兵 Bu Lingbing ◽  
郭劲秋 Guo Jinqiu ◽  
田力 Tian Li ◽  
黄兴友 Huang Xingyou ◽  
刘博 Liu Bo ◽  
...  

1988 ◽  
Vol 65 (5) ◽  
pp. 2337-2342 ◽  
Author(s):  
M. B. Ducharme ◽  
J. Frim

An easy-to-make, sensitive, thin, flexible, multisensor probe for in vivo tissue temperature profile measurement is described. It is essentially a multijunction thermocouple (i.e., a multicouple) of type-T composition. Enamel-insulated copper wires (38 gauge) were soldered 5 mm apart to one common uninsulated constantan wire (36 gauge) and introduced into a polyethylene tube sealed at one end. The total outside diameter of the multicouple probe is less than 1 mm, and the maximum number of junctions using the specified wire sizes is approximately 16. This design permits the instantaneous measurement of a tissue temperature profile at 5-mm intervals over a distance of approximately 8 cm. An extensive calibration for the thermal conductivity effect (k effect) along the multicouple wires by means of a limb model is presented. The results show that the temperature readings of the individual junctions are significantly affected by the k effect when a thermal gradient exists along the multicouple, as is usually the case during tissue temperature measurements. However, calibration of the multicouple for the k effect yields a measurement accuracy of +/- 0.1 degree C under a wide range of gradients. This probe can be implanted in tissues to measure thermal gradients under different physiological conditions.


2013 ◽  
Vol 10 (2) ◽  
pp. 1581-1615
Author(s):  
A. P. Tran ◽  
M. Vanclooster ◽  
S. Lambot

Abstract. The vertical profile of root zone soil moisture plays a key role in many hydro-meteorological and agricultural applications. We propose a closed-loop data assimilation procedure based on the maximum likelihood ensemble filter algorithm to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR) data. A hydrodynamic model is used to propagate the system state in time and a radar electromagnetic model to link the state variable with the observation data, which enables us to directly assimilate the GPR data. Instead of using the surface soil moisture only, the approach allows to use the information of the whole soil moisture profile for the assimilation. We validated our approach by a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR data was performed to solve the problem of unknown initial conditions. The numerical soil moisture profiles generated by the Hydrus-1D model were used by the GPR model to produce the "observed" GPR data. The results show that the soil moisture profile obtained by assimilating the GPR data is much better than that of an open-loop forecast. Compared to the loamy sand and silt, the updated soil moisture profile of the clay soil converges to the true state much more slowly. Increasing update interval from 5 to 50 h only slightly improves the effectiveness of the GPR data assimilation for the loamy sand but significantly for the clay soil. The proposed approach appears to be promising to improve real-time prediction of the soil moisture profiles as well as to provide effective estimates of the unsaturated hydraulic properties at the field scale from time-lapse GPR measurements.


Sign in / Sign up

Export Citation Format

Share Document