profile errors
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 355 ◽  
pp. 03072
Author(s):  
Beilei Wang

Mechanical errors seriously affect the transmission performance of mechanical structure, especially for high-precision mechanical structure. With the development of virtual simulation technology, the performance test of mechanical structure in virtual environment is gradually applied. Under the background, this paper takes the movable tooth reducer as the research object and puts forward a virtual performance test method by combing test errors with virtual simulation technology. The tooth profile errors of key components of the reducer are obtained by optical scanning, and the simulation test is carried out. Meanwhile, the accuracy of the simulation test is verified by the implementation of vibration test. The results show that both the simulated vibration acceleration and the experimental test vibration acceleration show a double-peak variation trend, and the frequency difference between the two peaks is less than 5%. Therefore, the simulation test method proposed in this paper can effectively evaluate the performance of mechanical structures.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (11) ◽  
pp. 695-708
Author(s):  
TATU PITKÄNEN

An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fei Ren ◽  
Jinchen Ji ◽  
Guofu Luo ◽  
Shaofu Zhao ◽  
Liya Zhao ◽  
...  

In this study, based on the lumped-parameter theory and the Lagrange approach, a novel and generalized bending-torsional-axial coupled dynamic model for analyzing the load sharing behavior in the herringbone planetary gear train (HPGT) is presented by taking into account the actual structure of herringbone gears, manufacturing errors, time-dependent meshing stiffness, bearing deflections, and gyroscopic effects. The model can be applied to the analysis of the vibration of the HPGT with any number of planets and different types of manufacturing errors in different floating forms. The HPGT equivalent meshing error is analyzed and derived for the tooth profile errors and manufacturing eccentric errors of all components in the HPGT system. By employing the variable-step Runge–Kutta approach to calculate the system dynamic response, in conjunction with the presented calculation approach of the HPGT load sharing coefficient, the relationships among manufacturing errors, component floating, and load sharing are numerically obtained. The effects of the combined errors and single error on the load sharing are, respectively, discussed. Meanwhile, the effects of the support stiffness of the main components in the HPGT system on load sharing behavior are analyzed. The results indicate that manufacturing errors, floating components, and system support stiffness largely influence the load sharing behavior of the HPGT system. The research has a vital guiding significance for the design of the HPGT system.


2021 ◽  
Vol 5 (2) ◽  
pp. 51
Author(s):  
Zongze Li ◽  
Hiroki Ogata ◽  
Ryuta Sato ◽  
Keiichi Shirase ◽  
Shigehiko Sakamoto

A cubic-machining test has been proposed to evaluate the geometric errors of rotary axes in five-axis machine tools using a 3 × 3 zone area in the same plane with different tool postures. However, as only the height deviation among the machining zones is detected by evaluating the test results, the machining test results are expected to be affected by some error parameters of tool sides, such as tool length and profile errors, and there is no research investigation on how the tool side error influences the cubic-machining test accuracy. In this study, machining inaccuracies caused by tool length and tool profile errors were investigated. The machining error caused by tool length error was formulated, and an intentional tool length error was introduced in the simulations and actual machining tests. As a result, the formulated and simulated influence of tool length error agreed with the actual machining results. Moreover, it was confirmed that the difference between the simulation result and the actual machining result can be explained by the influence of the tool profile error. This indicates that the accuracy of the cubic-machining test is directly affected by tool side errors.


Author(s):  
D.T. SAFAROV ◽  
A.G. KONDRASHOV

The article considers an approach to reducing the errors of the involute and longitudinal profiles of gears. The reduction of the profile error consists of several steps – evaluation of indicators relative to the limit values, identification of the technological structure, expert analysis of profilograms, which results in the content of corrective actions. Constant repetition of steps leads to a constant reduction of the most significant profile errors, which significantly reduces the risks of manufacturing wheels with inappropriate profile errors. The scheme is universal and can be used for any tooth processing operations. The article deals with the reduction of the error of profiles on the example of gear milling of cylindrical skew–toothed wheels with a worm gear cutter.


Author(s):  
Tuan H. Nguyen

Abstract This study presents a computer simulation for the dynamic design of compact high-contact-ratio spur gear transmissions. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented in this work was performed by using the NASA gear dynamics code DANST (Dynamic Analysis of Spur Gear Transmissions). In the analysis, the addendum ratio (addendum/diametral pitch) was varied over the range 1.30 to 1.40 to obtain a contact ratio of 2.00 or higher. The constraints of bending stress limit and involute interference provide the main criteria for this investigation. Compact design of high-contact-ratio gears with different gear ratios and pressure angles was investigated. Comparison of compact design between low-contact-ratio and high-contact-ratio gears was conducted. With the same operating parameters, high-contact-ratio gears appear to have much more compact design than low-contact-ratio gears. For compact design of high-contact-ratio gears, a diametral pitch of 6.00 appears to be the best choice for an optimal gear set.


Author(s):  
Nabih Feki ◽  
Maroua Hammami ◽  
Olfa Ksentini ◽  
Mohamed Slim Abbes ◽  
Mohamed Haddar

In this work, a nonlinear dynamic model of an FZG-A10 spur gear was investigated by taking into account for the actual time-varying gear mesh stiffness and the frictional effects between meshing gear teeth to evaluate the influence of the dynamic effects on frictional gear power loss predictions. The equations of motion of the generalized translational-torsional coupled dynamic system derived from Lagrange principle was extended compared to authors’ previous work in order to account for time dependent coefficient of friction and profile errors. The dynamic response of spur gears, computed by an iterative implicit scheme of Newmark, is changed due to the presence of coefficient of friction and profile errors. A dynamic analysis was performed and the influence of frictional effect including tooth shape deviations, in particular, was scrutinized since a time-dependent coefficient of friction is deeply related to the gear surface roughness and all parameters dependent on gears error profiles are introduced in the proposed model. The predicted meshing gear power losses with constant and local friction coefficient were compared. The influence of constant and variable profile errors considered in the local coefficient of friction formulation was also studied and their corresponding root mean square (RMS) power loss was compared to the experimental results. The results using FZG A10 spur gear pairs running under several operating conditions (different loads and speeds) validate the superiority of the proposed model against previous similar models.


Author(s):  
Michael Graveling

Abstract Background: Harnessing available knowledge and learning from our errors are prerequisites of delivering on the challenge of improving patient safety. Towards Safer Radiotherapy, published in 2008, was a response from the UK’s (UK) radiotherapy community to concerns arising from high profile errors. The report was a driver for the development of a national reporting and learning system for radiotherapy. Materials and methods: A literature review was conducted covering the years from 2009 to 2020. Search terms used were radiotherapy errors, patient safety, incident learning, human factors and trend analysis. A total of 10 papers reported recommendations or implementation of changes to service delivery models following systematic error analysis. None of these were from UK service providers. Conclusions: Twelve years on from the publication of Towards Safer Radiotherapy, there is little evidence of impact on safety culture within the UK radiotherapy community. Although the UK has a large radiotherapy error dataset, there remain unanswered questions about the impact on the safety culture in radiotherapy.


Author(s):  
V.N. Syzrantsev ◽  
E.Y. Moskvina ◽  
L.A. Chernaya

The use of drives based on pan precession gears with a small shaft angle in which multiple-tooth meshing is implemented significantly increases the efficiency and transmitted torque in oil and gas equipment. It also and reduces the breakaway torque by almost an order in comparison with worm gears. The production of pan gears in the semi-rolled version significantly simplifies tooth cutting technology. To exclude the possibility of edge contact of the teeth coming into meshing due to their contact and bending deformations, it is necessary to carry out profile correction of the teeth. To address this issue, a method utilizing a tool with a straight cutting edge displaced from the axial plane of the tool is proposed. Using cutting of the wheel teeth of a semi-rolled pan gear with the proposed tool as an example, calculations of the total profile errors and the tooth surface curvatures are performed to further determine the contact loading of the gear.


Sign in / Sign up

Export Citation Format

Share Document