web handling
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

TAPPI Journal ◽  
2021 ◽  
Vol 20 (11) ◽  
pp. 695-708
Author(s):  
TATU PITKÄNEN

An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.


The applications of web handling systems such as paper manufacturing, printing and film process, flexible component, paper manufacturing, textile.. are widely used in processing and manufacturing industry. In the application, tension control of the web plays a very crucial role. The mathematical model of the continuous web transport system is developed thanks to energy balance method. The paper presents a method of designing a tension control based on Linear Quadratic control. Several numerical simulation results are given to prove the effectiveness of the closed-loop system. In addition, the simulation results show incorrectness of another study in term of tension regulation.


2020 ◽  
Vol 10 (3) ◽  
pp. 5694-5699
Author(s):  
D. N. Duc ◽  
L. T. Thi ◽  
T. L. Nguyen

The speed and tension control problem of a web handling system is investigated in this paper. From the system equations of motion, we developed a backstepping-sliding mode control for web speed and tension regulation tasks. It is obvious that the designed control depends heavily on roll inertia information. Dissimilar to other researches that were based on the assumptions of rolls with perfect cylindrical form with the rotating shafts of the rolls considered properly aligned, the novelty of this paper is the presentation of a neural network to compensate the effects of imperfect roll arrangement. The neural network design is based on the Radial Basis Function (RBF) network estimating the uncertainty of roll inertia. The information on estimated inertia is fed into a backstepping-sliding mode controller that ensures tension and velocity tracking. The control design is presented in a systematical approach. Closed loop system stability is proven mathematically. The tracking performance is shown through several simulation scenarios.


Author(s):  
Edison O. Cobos Torres ◽  
Prabhakar R. Pagilla

Spatially dependent transfer functions for web span lateral dynamics which provide web lateral position and slope as outputs at any location in the web span are derived in this paper. The proposed approach overcomes one of the key limitations of the existing methods which provide web lateral position only on the rollers. The approach relies on taking the Laplace transform with respect to the temporal variable of both the web span lateral governing equation and the boundary conditions on the rollers, and solving the resulting equations. A general web span lateral transfer function, which is an explicit function of the spatial position along the span, is obtained first followed by its application to common guide configurations. The approach also significantly simplifies the consideration of shear (relevant to short spans), in addition to bending, which has been found to be difficult to handle in past studies. We first develop spatially dependent lateral transfer functions by considering only bending which is relevant to most web handling situations, and then add shear to the formulation and develop spatially dependent lateral transfer functions that include both bending and shear. Results from model simulations and pertinent discussions are provided. The spatially dependent transfer functions derived in this paper are a significant improvement over existing lateral transfer functions and provide mechanisms to analyze web lateral behavior within spans, study propagation of lateral disturbances, and aid in the development of closed-loop lateral control systems in emerging applications that require precise lateral positioning of the web.


2018 ◽  
pp. 147-170 ◽  
Author(s):  
David R. Roisum ◽  
Gustavo Guzman ◽  
S. Shams Es-haghi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document