An Experimental Study of an Improved BLE Indoor Positioning Scheme Based on Differential Distance Correction

Author(s):  
Yun-Tzu Kuo
Author(s):  
Y. T. Tang ◽  
Y. T. Kuo ◽  
J. K. Liao ◽  
K. W. Chiang

Abstract. Recently, indoor positioning becomes a popular issue because of its corresponding location-aware applications. Owing to the limits of the sheltered signal of satellites in indoor environments, one of the alternative scheme is Bluetooth Low Energy (BLE) technology. BLE device broadcasts Received Signal Strength Indicator (RSSI) for distance estimation and further positioning. However, in the complex indoor environment, the reflection, fading, and multipath effect of BLE make the variable RSSI and may lead to poor quality of RSSI. In this study, the concept called Differential Distance Correction (DDC) is similar to the Differential Global Navigation Satellite System (DGNSS). This method can eliminate some residuals and further improve the results with the corrected distance. On the other hand, Pedestrian Dead Reckoning (PDR) is another common indoor positioning method. PDR can propagate the next position from the current position by the implemented of inertial sensors. Despite that, the error of inertial sensors would accumulate with time and walking distance, which position update is required for restraining the drift. Accordingly, the two indoor positioning methods have their strong and weak point. BLE-based positioning is absolute positioning, while PDR is relative positioning. This study proposes a concept that combines the two methods. The pedestrian receives the RSSI and records the information from inertial sensors simultaneously. Through the complementary of two methods, the positioning results would be improved from 29% to 66% according to different travelled distance.


Author(s):  
Andrei Papliatseyeu ◽  
Venet Osmani ◽  
Oscar Mayora

This paper presents an indoor positioning system based on FM radio. The system is built on commercially available short-range FM transmitters. This is the first experimental study of FM performance for indoor localisation. FM radio possesses a number of features, which make it distinct from other localisation technologies. Despite the low cost and off-the-shelf components, this FM positioning system reaches a high performance, comparable to other positioning technologies such as Wi-Fi. The authors’ experiments have yielded a median accuracy of 1.0 m and in 95% of cases the error is below 5 m.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 89919-89934
Author(s):  
O-Jong Kim ◽  
Daniel Hong ◽  
Jungbeom Kim ◽  
Taikjin Lee ◽  
Changdon Kee

2010 ◽  
Vol 1 (3) ◽  
pp. 19-31 ◽  
Author(s):  
Andrei Papliatseyeu ◽  
Venet Osmani ◽  
Oscar Mayora

This paper presents an indoor positioning system based on FM radio. The system is built on commercially available short-range FM transmitters. This is the first experimental study of FM performance for indoor localisation. FM radio possesses a number of features, which make it distinct from other localisation technologies. Despite the low cost and off-the-shelf components, this FM positioning system reaches a high performance, comparable to other positioning technologies such as Wi-Fi. The authors’ experiments have yielded a median accuracy of 1.0 m and in 95% of cases the error is below 5 m.


Author(s):  
Hélder David Malheiro da Silva ◽  
José Augusto Afonso ◽  
Luís Alexandre Rocha

Author(s):  
Norio Baba ◽  
Norihiko Ichise ◽  
Syunya Watanabe

The tilted beam illumination method is used to improve the resolution comparing with the axial illumination mode. Using this advantage, a restoration method of several tilted beam images covering the full azimuthal range was proposed by Saxton, and experimentally examined. To make this technique more reliable it seems that some practical problems still remain. In this report the restoration was attempted and the problems were considered. In our study, four problems were pointed out for the experiment of the restoration. (1) Accurate beam tilt adjustment to fit the incident beam to the coma-free axis for the symmetrical beam tilting over the full azimuthal range. (2) Accurate measurements of the optical parameters which are necessary to design the restoration filter. Even if the spherical aberration coefficient Cs is known with accuracy and the axial astigmatism is sufficiently compensated, at least the defocus value must be measured. (3) Accurate alignment of the tilt-azimuth series images.


Sign in / Sign up

Export Citation Format

Share Document