scholarly journals Performance and Technological Feasibility of Aerospace Plane Horizontal Launch and Landing with Ekranoplane Assistance

2020 ◽  
Vol 01 (02) ◽  

Numerous attempts to reduce the cost of launching a satellite into low Earth orbit (LEO) were undertaken in many countries and characterize the current trend to make space projects economically viable and less costly. This is necessary for the progress of the development of our earthly civilization, its evolution according to the plans of the outstanding Russian thinker, the founder of cosmonautics Konstantin E. Tsiolkovsky. Mastering of the Moon and Mars are the necessary steps in the cosmic evolution of earthlings. Unfortunately, this process has not led presently to a sharp decrease in the specific launch cost. The concepts of such task solving are considered in this paper.

Subject Space stations. Significance As Washington returns its sights to the moon, it is reforming its policies regarding the International Space Station (ISS) with a view to jump-starting a 'low-earth orbit economy' in which private firms offer services to corporate clients, foreign governments and wealthy individuals. Impacts China's space station, due for completion in 2022, could draw third-country projects away from commercial US space stations. Governments are more promising clients for commercial crewed spaceflight than 'space tourists' are. Commercial stations and passenger spacecraft could make human spaceflight accessible to allied states. Spaceflight will remain politicised.


2018 ◽  
Vol 20 (1) ◽  
pp. 3
Author(s):  
Osamu Odawara

Space technology has been developed for frontier exploration not only in low-earth orbit environment but also beyond the earth orbit to the Moon and Mars, where material resources might be strongly restricted and almost impossible to be resupplied from the earth for distant and long-term missions performance toward “long-stays of humans in space”. For performing such long-term space explorations, none would be enough to develop technologies with resources only from the earth; it should be required to utilize resources on other places with different nature of the earth, i.e., in-situ resource utilization. One of important challenges of lunar in-situ resource utilization is thermal control of spacecraft on lunar surface for long-lunar durations. Such thermal control under “long-term field operation” would be solved by “thermal wadis” studied as a part of sustainable researches on overnight survivals such as lunar-night. The resources such as metal oxides that exist on planets or satellites could be refined, and utilized as a supply of heat energy, where combustion synthesis can stand as a hopeful technology for such requirements. The combustion synthesis technology is mainly characterized with generation of high-temperature, spontaneous propagation of reaction, rapid synthesis and high operability under various influences with centrifugal-force, low-gravity and high vacuum. These concepts, technologies and hardware would be applicable to both the Moon and Mars, and these capabilities might achieve the maximum benefits of in-situ resource utilization with the aid of combustion synthesis applications. The present paper mainly concerns the combustion synthesis technologies for sustainable lunar overnight survivals by focusing on “potential precursor synthesis and formation”, “in-situ resource utilization in extreme environments” and “exergy loss minimization with efficient energy conversion”.


Author(s):  
Claas Tido Olthoff ◽  
Philipp Reiss

Human spaceflight is an expensive endeavor. Every kilogram that needs to be transported to low Earth orbit or beyond costs tens of thousands of dollars, with the cost increasing exponentially the farther humanity extends its reach into the solar system and beyond. It is therefore prudent, if not necessary, to consider the use of resources that are available at the destination of a given exploration mission. This concept is called in-situ resource utilization (ISRU). The processes that are required to extract useful materials from the local environment can not only be used to support a human crew, but also to obtain resources that are of value on Earth and can thus be returned there for commercial gain. This chapter provides background information on ISRU in general and discusses the most important technologies and processes that are currently employed or under development.


2021 ◽  
Author(s):  
Sukhmander Singh ◽  
Sanjeev Kumar ◽  
Shravan Kumar Meena ◽  
Sujit Kumar Saini

Technically, there are two types of propulsion systems namely chemical and electric depending on the sources of the fuel. Electrostatic thrusters are used for launching small satellites in low earth orbit which are capable to provide thrust for long time intervals. These thrusters consume less fuel compared to chemical propulsion systems. Therefore for the cost reduction interests, space scientists are interested to develop thrusters based on electric propulsion technology. This chapter is intended to serve as a general overview of the technology of electric propulsion (EP) and its applications. Plasma based electric propulsion technology used for space missions with regard to the spacecraft station keeping, rephrasing and orbit topping applications. Typical thrusters have a lifespan of 10,000 h and produce thrust of 0.1–1 N. These devices have E→×B→ configurations which is used to confine electrons, increasing the electron residence time and allowing more ionization in the channel. Almost 2500 satellites have been launched into orbit till 2020. For example, the ESA SMART-1 mission (Small Mission for Advanced Research in Technology) used a Hall thruster to escape Earth orbit and reach the moon with a small satellite that weighed 367 kg. These satellites carrying small Hall thrusters for orbital corrections in space as thrust is needed to compensate for various ambient forces including atmospheric drag and radiation pressure. The chapter outlines the electric propulsion thruster systems and technologies and their shortcomings. Moreover, the current status of potential research to improve the electric propulsion systems for small satellite has been discussed.


2021 ◽  
Vol 19 (73-74) ◽  
Author(s):  
Veaceslav Ursaki ◽  

In relation with the 60th anniversary of the first flight of humans to the space, a retrospective is presented in this paper concerning the development of spatial technologies, starting from the first theoretical concepts of the rocket science and ending with the today's projects of launching humans to other planets. In particular, the competition between the USA and USSR for the first space flight and the human flight to the Moon are analyzed. The technical characteristics of rockets for placing payloads on the low earth orbit and beyond as well as those of the rocket-spaceship systems are discussed.


Sign in / Sign up

Export Citation Format

Share Document