scholarly journals Impacts of Detailed Land-Use Types and Urban Heat in an Urban Canopy Model on Local Meteorology and Ozone Levels for Air Quality Modeling in a Coastal City, Korea

2016 ◽  
Vol 27 (6) ◽  
pp. 877-891 ◽  
Author(s):  
Yoon-Hee Kang ◽  
Sang-Keun Song ◽  
Mi-Kyeong Hwang ◽  
Ju-Hee Jeong ◽  
Yoo-Keun Kim
2016 ◽  
Vol 9 (12) ◽  
pp. 4339-4363 ◽  
Author(s):  
Friderike Kuik ◽  
Axel Lauer ◽  
Galina Churkina ◽  
Hugo A. C. Denier van der Gon ◽  
Daniel Fenner ◽  
...  

Abstract. Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin–Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin–Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols. NOx (NO + NO2) concentrations are simulated reasonably well on average, but nighttime concentrations are overestimated due to the model's underestimation of the mixing layer height, and urban daytime concentrations are underestimated. The daytime underestimation is improved when using downscaled, and thus locally higher emissions, suggesting that part of this bias is due to deficiencies in the emission input data and their resolution. The results further demonstrate that a horizontal resolution of 3 km improves the results and spatial representativeness of the model compared to a horizontal resolution of 15 km. With the input data (land use classes, emissions) at the level of detail of the base run of this study, we find that a horizontal resolution of 1 km does not improve the results compared to a resolution of 3 km. However, our results suggest that a 1 km horizontal model resolution could enable a detailed simulation of local pollution patterns in the Berlin–Brandenburg region if the urban land use classes, together with the respective input parameters to the urban canopy model, are specified with a higher level of detail and if urban emissions of higher spatial resolution are used.


2016 ◽  
Author(s):  
Friderike Kuik ◽  
Axel Lauer ◽  
Galina Churkina ◽  
Hugo A. C. Denier van der Gon ◽  
Daniel Fenner ◽  
...  

Abstract. Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15 km, 3 km, and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily eight hour mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols. NOx (= NO + NO2) concentrations are simulated reasonably well on average, but nighttime concentrations are overestimated due to the model's underestimation of the mixing layer height, and urban daytime concentrations are underestimated. The daytime underestimation is improved when using downscaled, and thus locally higher emissions, suggesting that part of this bias is due to deficiencies in the emission input data and their resolution. The results further demonstrate that a horizontal resolution of 3 km improves the results and spatial representativeness of the model compared to a horizontal resolution of 15 km. With the input data (land use classes, emissions) at the level of detail of the base run of this study we find that a horizontal resolution of 1 km does not improve the results compared to a resolution of 3 km. However, our results suggest that a 1 km horizontal model resolution could enable a detailed simulation of local pollution patterns in the Berlin-Brandenburg region if the urban land use classes together with the respective input parameters to the urban canopy model are specified with a higher level of detail and if urban emissions of higher spatial resolution are used.


Author(s):  
Estatio Gutie´rrez ◽  
Jorge E. Gonza´lez ◽  
Robert Bornstein ◽  
Mark Arend ◽  
Alberto Martilli

The thermal response of a large city including the energy production aspects of it are explored for a large and complex city using urbanized atmospheric mesoscale modeling. The Weather Research and Forecasting (WRF) mesocale model is coupled to a multi-layer urban canopy model that considers thermal and mechanical effects of the urban environment including a building scale energy model to account for anthropogenic heat contributions due to indoor-outdoor temperature differences. This new urban parameterization is used to evaluate the evolution and the resulting urban heat island formation associated to a 3-day heat wave in New York City (NYC) during the summer of 2010. High resolution (250 m.) urban canopy parameters (UCPs) from the National Urban Database were employed to initialize the multi-layer urban parameterization. The precision of the numerical simulations is evaluated using a range of observations. Data from a dense network of surface weather stations, wind profilers and Lidar measurements are compared to model outputs over Manhattan and its surroundings during the 3-days event. The thermal and drag effects of buildings represented in the multilayer urban canopy model improves simulations over urban regions giving better estimates of the surface temperature and wind speed. An accurate representation of the nocturnal urban heat island registered over NYC in the event was obtained from the improved model. The accuracy of the simulation is further assessed against more simplified urban parameterizations models with positive results with new approach. Results are further used to quantify the energy consumption of the buildings during the heat wave, and to explore alternatives to mitigate the intensity of the UHI during the extreme event.


Sign in / Sign up

Export Citation Format

Share Document