vegetation fraction
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 47)

H-INDEX

24
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 580
Author(s):  
Emna Ayari ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
Nicolas Baghdadi ◽  
Mehrez Zribi

The objective of this paper was to estimate soil moisture in pepper crops with drip irrigation in a semi-arid area in the center of Tunisia using synthetic aperture radar (SAR) data. Within this context, the sensitivity of L-band (ALOS-2) in horizontal-horizontal (HH) and horizontal-vertical (HV) polarizations and C-band (Sentinel-1) data in vertical-vertical (VV) and vertical-horizontal (VH) polarizations is examined as a function of soil moisture and vegetation properties using statistical correlations. SAR signals scattered by pepper-covered fields are simulated with a modified version of the water cloud model using L-HH and C-VV data. In spatially heterogeneous soil moisture cases, the total backscattering is the sum of the bare soil contribution weighted by the proportion of bare soil (one-cover fraction) and the vegetation fraction cover contribution. The vegetation fraction contribution is calculated as the volume scattering contribution of the vegetation and underlying soil components attenuated by the vegetation cover. The underlying soil is divided into irrigated and non-irrigated parts owing to the presence of drip irrigation, thus generating different levels of moisture underneath vegetation. Based on signal sensitivity results, the potential of L-HH data to retrieve soil moisture is demonstrated. L-HV data exhibit a higher potential to retrieve vegetation properties regarding a lower potential for soil moisture estimation. After calibration and validation of the proposed model, various simulations are performed to assess the model behavior patterns under different conditions of soil moisture and pepper biophysical properties. The results highlight the potential of the proposed model to simulate a radar signal over heterogeneous soil moisture fields using L-HH and C-VV data.


2021 ◽  
Vol 14 (1) ◽  
pp. 78
Author(s):  
Wenyi Lu ◽  
Tsuyoshi Okayama ◽  
Masakazu Komatsuzaki

Unmanned aerial vehicle (UAV) photogrammetry was used to monitor crop height in a flooded paddy field. Three multi-rotor UAVs were utilized to conduct flight missions in order to capture RGB (RedGreenBlue) and multispectral images, and these images were analyzed using several different models to provide the best results. Two image sets taken by two UAVs, mounted with RGB cameras of the same resolution and Global Navigation Satellite System (GNSS) receivers of different accuracies, were applied to perform photogrammetry. Two methods were then proposed for creating crop height models (CHMs), one of which was denoted as the M1 method and was based on the Digital Surface Point Cloud (DSPC) and the Digital Terrain Point Cloud (DSPT). The other was denoted as the M2 method and was based on the DSPC and a bathymetric sensor. An image set taken by another UAV mounted with a multispectral camera was used for multispectral-based photogrammetry. A Normal Differential Vegetation Index (NDVI) and a Vegetation Fraction (VF) were then extracted. A new method based on multiple linear regression (MLR) combining the NDVI, the VF, and a Soil Plant Analysis Development (SPAD) value for estimating the measured height (MH) of rice was then proposed and denoted as the M3 method. The results show that the M1 method, the UAV with a GNSS receiver with a higher accuracy, obtained more reliable estimations, while the M2 method, the UAV with a GNSS receiver of moderate accuracy, was actually slightly better. The effect on the performance of CHMs created by the M1 and M2 methods is more negligible in different plots with different treatments; however, remarkably, the more uniform the distribution of vegetation over the water surface, the better the performance. The M3 method, which was created using only a SPAD value and a canopy NDVI value, showed the highest coefficient of determination (R2) for overall MH estimation, 0.838, compared with other combinations.


MAUSAM ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 669-674
Author(s):  
S. R. OZA ◽  
R. P. SINGH ◽  
V. K. DADHWAL

lkj & ,e- ,e- 5 tSls eslksLdsy tyok;q fun’kksZa }kjk ouLifr ¼oh- ,Q-½ dh lwpuk nsus dk dk;Z egRoiw.kZ gSA fun’kZu ¼ekWMfyax½ esa lkekU; :Ik ls lcls vf/kd iz;qDr dh xbZ tyok;q laca/kh ekfld oh- ,Q-  gSA oh- ,Q- dh lwpuk,¡ ,u- vks- ,- ,- & ,- oh- ,p- vkj- vkj-  ,u- Mh- oh- vkbZ- HkweaMyh; vk¡dM+k lsVksa dk mi;ksx djrs gq, xqVesu vkSj bXukVkso ¼1988½ ¼th- vkbZ-½ }kjk rS;kj dh xbZ gSA bl 'kks/k&i= esa Hkkjrh; {ks= ds vizSy 1998 ls uoacj 2003 dh vof/k ds LikWV& ost+hVs’ku 10 fnolh; fefJr ,u- Mh- oh- vkbZ- ds mRiknksa dk mi;ksx djrs gq, 1 fd- eh- ds oh- ,Q- ds vk¡dM+k lsV rS;kj djus ds ckjs esa crk;k x;k gSA LikWV&osthVs’ku ds 0 % vkSj 100 % dh  oh- ,Q- ls laca) ,u- Mh- oh- vkbZ- dh laosnd fof’k"V izHkkolhek,¡ th- vkbZ- ds 0-04 vkSj 0-52 dh rqyuk esa Øe’k: 0-04 vkSj 0-804 ikbZ xbZaA th- vkbZ- ds tyok;q laca/kh oh- ,Q ds lkFk izkIr fd, x, oh- ,Q ds vk¡dM+ksa dh rqyuk dh xbZ gSA rhu v{kka’kh; {ks=ksa ¼<16] 16&24] > 24½ ds fy, oh- ,Q- ds fo’ys"k.k ls th- vkbZ- ls 15 % rd dh fHkUurkvksa dk irk pyk gSA o"kkZ&vk/kkfjr Ñf"k okys {ks= esa mYys[kuh; fHkUurk dk irk pyk gSA oh- ,Q- ls izkIr fd, x, ekSleh vkSj o"kZ&izfro"kZ dh fHkUurkvksa ds ifj.kkeksa ij fopkj&foe’kZ fd;k x;k  gSA  Vegetation fraction (VF) is an important input in mesoscale climate models, such as MM5. The most commonly used VF inputs in modeling is the climatic monthly VF generated by Gutman and Ignatov (1998)  (GI) using NOAA-AVHRR NDVI global data sets. This paper reports the generation of 1 km VF data set using SPOT-VEGETATION 10-day composite NDVI products from April 1998 to November 2003 for the Indian region. Sensor-specific thresholds of NDVI associated with 0% and 100% VF for SPOT-VEGETATION were found to be 0.04 and 0.804, respectively, in contrast to 0.04 and 0.52 of GI. Comparison of derived VF with climatic VF of GI was carried out.  Analysis of VF for three latitudinal zones (<16, 16-24, >24) indicated the differences up to 15 percent from GI.  Significant difference was observed for the area having rain-fed agriculture. Results of the seasonal and year-to-year variations of derived VF are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daisuke Ogawa ◽  
Toshihiro Sakamoto ◽  
Hiroshi Tsunematsu ◽  
Noriko Kanno ◽  
Yasunori Nonoue ◽  
...  

High-throughput phenotyping systems with unmanned aerial vehicles (UAVs) enable observation of crop lines in the field. In this study, we show the ability of time-course monitoring of canopy height (CH) to identify quantitative trait loci (QTLs) and to characterise their pleiotropic effect on various traits. We generated a digital surface model from low-altitude UAV-captured colour digital images and investigated CH data of rice multi-parental advanced generation inter-cross (MAGIC) lines from tillering and heading to maturation. Genome-wide association studies (GWASs) using the CH data and haplotype information of the MAGIC lines revealed 11 QTLs for CH. Each QTL showed haplotype effects on different features of CH such as stage-specificity and constancy. Haplotype analysis revealed relationships at the QTL level between CH and, vegetation fraction and leaf colour [derived from UAV red–green–blue (RGB) data], and CH and yield-related traits. Noticeably, haplotypes with canopy lowering effects at qCH1-4, qCH2, and qCH10-2 increased the ratio of panicle weight to leaf and stem weight, suggesting biomass allocation to grain yield or others through growth regulation of CH. Allele mining using gene information with eight founders of the MAGIC lines revealed the possibility that qCH1-4 contains multiple alleles of semi-dwarf 1 (sd1), the IR-8 allele of which significantly contributed to the “green revolution” in rice. This use of remote-sensing-derived phenotyping data into genetics using the MAGIC lines gives insight into how rice plants grow, develop, and produce grains in phenology and provides information on effective haplotypes for breeding with ideal plant architecture and grain yield.


2021 ◽  
Vol 14 (10) ◽  
pp. 6155-6175
Author(s):  
Mingshuai Zhang ◽  
Chun Zhao ◽  
Yuhan Yang ◽  
Qiuyan Du ◽  
Yonglin Shen ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) simulated by current air quality and climate models still have large uncertainties, which can influence atmospheric chemistry and secondary pollutant formation. These modeling sensitivities are primarily due to two sources. One originates from different treatments in the physical and chemical processes associated with the emission rates of BVOCs. The other is errors in the specification of vegetation types and their distribution over a specific region. In this study, the version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) updated by the University of Science and Technology of China (USTC version of WRF-Chem) from the public WRF-Chem(v3.6) is used. The modeling results over eastern China with different versions (v1.0, v2.0, v3.0) of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) in WRF-Chem are examined or documented. Sensitivity experiments with these three versions of MEGAN and two vegetation datasets are conducted to investigate the difference of three MEGAN versions in modeling BVOCs and its dependence on the vegetation distributions. The experiments are also conducted for spring (April) and summer (July) to examine the seasonality of the modeling results. The results indicate that MEGAN v3.0 simulates the largest amount of biogenic isoprene emissions over eastern China. The different performance among MEGAN versions is primarily due to their different treatments of applying emission factors and vegetation types. In particular, the results highlight the importance of considering the sub-grid vegetation fraction in estimating BVOC emissions over eastern China, which has a large area of urbanization. Among all activity factors, the temperature-dependent factor dominates the seasonal change of activity factor in all three versions of MEGAN, while the different response to the leaf area index (LAI) change determines the difference among the three versions in seasonal variation of BVOC emissions. The simulated surface ozone concentration due to BVOCs can be significantly different (ranging from 1 to more than 10 ppbv in some regions) among the experiments with three versions of MEGAN, which is mainly due to their impacts on surface VOCs and NOx concentrations. Theoretically MEGAN v3.0 that is coupled with the land surface scheme and considers the sub-grid vegetation effect should overcome previous versions of MEGAN in WRF-Chem. However, considering uncertainties of retrievals and anthropogenic emissions over eastern China, it is still difficult to apply satellite retrievals of formaldehyde and/or limited sparse in situ observations to constrain the uncertain parameters or functions in BVOC emission schemes and their impacts on photochemistry and ozone production. More accurate vegetation distribution and measurements of biogenic emission fluxes and species concentrations are still needed to better evaluate and optimize models.


2021 ◽  
Vol 13 (19) ◽  
pp. 10923
Author(s):  
Jing Kong ◽  
Yongling Zhao ◽  
Jan Carmeliet ◽  
Chengwang Lei

With rapid urbanization, population growth and anthropogenic activities, an increasing number of major cities across the globe are facing severe urban heat islands (UHI). UHI can cause complex impacts on the urban environment and human health, and it may bring more severe effects under heatwave (HW) conditions. In this paper, a holistic review is conducted to articulate the findings of the synergies between UHI and HW and corresponding mitigation measures proposed by the research community. It is worth pointing out that most studies show that urban areas are more vulnerable than rural areas during HWs, but the opposite is also observed in some studies. Changes in urban energy budget and major drivers are discussed and compared to explain such discrepancies. Recent studies also indicate that increasing albedo, vegetation fraction and irrigation can lower the urban temperature during HWs. Research gaps in this topic necessitate more studies concerning vulnerable cities in developing countries. Moreover, multidisciplinary studies considering factors such as UHI, HW, human comfort, pollution dispersion and the efficacy of mitigation measures should be conducted to provide more accurate and explicit guidance to urban planners and policymakers.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1981
Author(s):  
Yan Li ◽  
Chengcai Zhang ◽  
Weidong Heng

Surface soil moisture (SSM) is a major factor that affects crop growth. Combined microwave and optical data have been widely used to improve the accuracy of SSM retrievals. However, the influence of vegetation indices derived from the red-edge spectral bands of multi-spectral optical data on retrieval accuracy has not been sufficiently analyzed. In this study, we retrieved soil moisture from wheat-covered surfaces using Sentinel-1/2 data. First, a modified water cloud model (WCM) was proposed to remove the influence of vegetation from the backscattering coefficient of the radar data. The vegetation fraction (FV) was then introduced in this WCM, and the vegetation water content (VWC) was calculated using a multiple linear regression model. Subsequently, the support vector regression technique was used to retrieve the SSM. This approach was validated using in situ measurements of wheat fields in Hebi, located in northern Henan Province, China. The key findings of this study are: (1) Based on vegetation indices obtained from Sentinel-2 data, the proposed VWC estimation model effectively eliminated the influence of vegetation; (2) Compared with vertical transmit and horizontal receive (VH) polarization, vertical transmit and vertical receive (VV) polarization was better for detecting changes in SSM key phenological phases of wheat; (3) The validated model indicates that the proposed approach successfully retrieved SSM in the study area using Sentinel-1 and Sentinel-2 data.


2021 ◽  
Vol 25 (7) ◽  
pp. 4099-4125 ◽  
Author(s):  
Michiel Maertens ◽  
Gabriëlle J. M. De Lannoy ◽  
Sebastian Apers ◽  
Sujay V. Kumar ◽  
Sarith P. P. Mahanama

Abstract. In this study, we tested the impact of a revised set of soil, vegetation and land cover parameters on the performance of three different state-of-the-art land surface models (LSMs) within the NASA Land Information System (LIS). The impact of this revision was tested over the South American Dry Chaco, an ecoregion characterized by deforestation and forest degradation since the 1980s. Most large-scale LSMs may lack the ability to correctly represent the ongoing deforestation processes in this region, because most LSMs use climatological vegetation indices and static land cover information. The default LIS parameters were revised with (i) improved soil parameters, (ii) satellite-based interannually varying vegetation indices (leaf area index and green vegetation fraction) instead of climatological vegetation indices, and (iii) yearly land cover information instead of static land cover. A relative comparison in terms of water budget components and “efficiency space” for various baseline and revised experiments showed that large regional and long-term differences in the simulated water budget partitioning relate to different LSM structures, whereas smaller local differences resulted from updated soil, vegetation and land cover parameters. Furthermore, the different LSM structures redistributed water differently in response to these parameter updates. A time-series comparison of the simulations to independent satellite-based estimates of evapotranspiration and brightness temperature (Tb) showed that no LSM setup significantly outperformed another for the entire region and that not all LSM simulations improved with updated parameter values. However, the revised soil parameters generally reduced the bias between simulated surface soil moisture and pixel-scale in situ observations and the bias between simulated Tb and regional Soil Moisture Ocean Salinity (SMOS) observations. Our results suggest that the different hydrological responses of various LSMs to vegetation changes may need further attention to gain benefits from vegetation data assimilation.


Author(s):  
Clara Sophie Draper

AbstractThe ensembles used in the NOAA National Centers for Environmental Prediction (NCEP) global data assimilation and numerical weather prediction (NWP) system are under-dispersed at and near the land surface, preventing their use in ensemble-based land data assimilation. Comparison to offline (land-only) data assimilation ensemble systems suggests that while the relevant atmospheric fields are under-dispersed in NCEP’s system, this alone cannot explain the under-dispersed land component, and an additional scheme is required to explicitly account for land model error. This study then investigates several schemes for perturbing the soil (moisture and temperature) states in NCEP’s system, qualitatively comparing the induced ensemble spread to independent estimates of the forecast error standard deviation in soil moisture, soil temperature, 2m temperature, and 2m humidity. Directly adding perturbations to the soil states, as is commonly done in offline systems, generated unrealistic spatial patterns in the soil moisture ensemble spread. Application of a Stochastically Perturbed Physics Tendencies scheme to the soil states is inherently limited in the amount of soil moisture spread that it can induce. Perturbing the land model parameters, in this case vegetation fraction, generated a realistic distribution in the ensemble spread, while also inducing perturbations in the land (soil states) and atmosphere (2m states) that are consistent with errors in the land/atmosphere fluxes. The parameter perturbation method is then recommended for NCEP’s ensemble system, and it is currently being refined within the development of an ensemble-based coupled land/atmosphere data assimilation for NCEP’s NWP system.


Sign in / Sign up

Export Citation Format

Share Document