scholarly journals Effect of Neutron Anisotropic Scattering and Treatment of Angular Dependency of Neutron Flux in Effective Cross Section on Criticality in Fast Reactor Analysis

2004 ◽  
Vol 3 (2) ◽  
pp. 200-207 ◽  
Author(s):  
Gou CHIBA
Author(s):  
Xianan Du ◽  
Liangzhi Cao ◽  
Youqi Zheng

A way to generate the few-group cross sections for fast reactor calculation is presented in this paper. It is based on the three steps computational scheme. In the first step, the ultrafine method is used to solve the slowing down equation based on the ultrafine group cross section generated by NJOY. Optional 0D or 1D calculation is used to collapse energy group into broad energy groups. In the second step, the 2D RZ calculation using SN method is performed to obtain the space dependent neutron spectra to collapse broad energy groups into few groups. The anisotropic scattering is well handled by the direct SN calculation. Finally, the full core calculation is performed by using the 3D SN nodal method. The results are compared with continuous energy Monte-Carlo calculation. Both the cross section generated in the first step and the final keff in the last step are compared. The results match well between the three steps calculation and Monte-Carlo calculation.


Author(s):  
Wanlin Li ◽  
Kan Wang ◽  
Ganglin Yu ◽  
Yaodong Li

Monte Carlo (MC) burnup calculation method, implemented through coupling neutron transport and point depletion solvers, is widely used in design and analysis of nuclear reactor. Burnup calculation is generally solved by dividing reactor lifetime into steps and modeling geometry into numbers of burnup areas where neutron flux and one group effective cross sections are treated as constant during each burnup step. Such constant approximation for neutron flux and effective cross section will lead to obvious error unless using fairly short step. To yield accuracy and efficiency improvement, coupling schemes have been researched in series of MC codes. In this study, four coupling schemes, beginning of step approximation, predictor-corrector methods by correcting nuclide density and flux-cross section as well as high order predictor-corrector with sub-step method were researched and implemented in RMC. Verification and comparison were performed by adopting assembly problem from VERA international benchmark. Results illustrate that high order coupled with sub-step method is with notable accuracy compared to beginning of step approximation and traditional predictor-corrector, especially for calculation in which step length is fairly long.


1974 ◽  
Vol 52 (15) ◽  
pp. 1421-1428 ◽  
Author(s):  
D. C. Santry ◽  
J. P. Butler

Cross sections for the production of 103Rhm were measured by the activation method. At energies below 5.3 MeV the neutron flux was measured with a calibrated neutron long counter, while at higher energies, measurements were made relative to the known cross section for the 32S(n,p)32P reaction. The shape of the Rh excitation curve is discussed in terms of known energy levels in 103Rh. An effective cross section for a 235U fission neutron spectrum calculated from the measured excitation curve is 724 ± 43 mb.


2018 ◽  
Vol 192 (1) ◽  
pp. 40-51 ◽  
Author(s):  
Bastien Faure ◽  
Pascal Archier ◽  
Jean-François Vidal ◽  
Laurent Buiron

1976 ◽  
Vol 40 (2) ◽  
pp. 202-203 ◽  
Author(s):  
�. F. Fomushkin ◽  
E. K. Gutnikova ◽  
G. F. Novoselov ◽  
V. I. Panin

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-755-C7-756
Author(s):  
N. S. Kopeika ◽  
T. Karcher ◽  
C.S. Ih.

Sign in / Sign up

Export Citation Format

Share Document