fission neutron
Recently Published Documents


TOTAL DOCUMENTS

529
(FIVE YEARS 46)

H-INDEX

27
(FIVE YEARS 3)

Metrology ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-18
Author(s):  
Nikolay V. Kornilov ◽  
Vladimir G. Pronyaev ◽  
Steven M. Grimes

Each experiment provides new information about the value of some physical quantity. However, not only measured values but also the uncertainties assigned to them are an important part of the results. The metrological guides provide recommendations for the presentation of the uncertainties of the measurement results: statistics and systematic components of the uncertainties should be explained, estimated, and presented separately as the results of the measurements. The experimental set-ups, the models of experiments for the derivation of physical values from primary measured quantities, are the product of human activity, making it a rather subjective field. The Systematic Distortion Factor (SDF) may exist in any experiment. It leads to the bias of the measured value from an unknown “true” value. The SDF appears as a real physical effect if it is not removed with additional measurements or analysis. For a set of measured data with the best evaluated true value, their differences beyond their uncertainties can be explained by the presence of Unrecognized Source of Uncertainties (USU) in these data. We can link the presence of USU in the data with the presence of SDF in the results of measurements. The paper demonstrates the existence of SDF in Prompt Fission Neutron Spectra (PFNS) measurements, measurements of fission cross sections, and measurements of Maxwellian spectrum averaged neutron capture cross sections for astrophysical applications. The paper discusses introducing and accounting for the USU in the data evaluation in cases when SDF cannot be eliminated. As an example, the model case of 238U(n,f)/235U(n,f) cross section ratio evaluation is demonstrated.


2021 ◽  
pp. 23-31
Author(s):  
Wei Shen ◽  
Benjamin Rouben

A nuclear reactor is designed to achieve the very delicate balance between neutron “production” (release) in fission reactions and neutron loss by absorption and leakage. A given neutron will be “born” in a fission event and will then usually scatter about the reactor until it meets its eventual “death” either by being absorbed in some material or by leaking out of the reactor. A certain number of these neutrons will be absorbed by fissionable nuclei and induce further fissions, thereby leading to the birth of new fission neutrons, that is, to a new generation of neutrons. The ratio of the number of neutrons born in a fission-neutron generation to the number born in the previous generation is called the effective reactor multiplication factor, keff. The keff characterizes the balance or imbalance in the chain reaction. Alternatively, keff can be defined by the ratio of production rate to loss rate of neutrons in the reactor. These definitions are given below:


2021 ◽  
Vol 247 ◽  
pp. 02033
Author(s):  
Yuxuan Liu ◽  
Robert Salko ◽  
Kang Seog Kim ◽  
Xinyan Wang ◽  
Matthew Kabelitz ◽  
...  

The default energy deposition model in the CASL neutronics code MPACT assumes all fission energy is deposited locally in fuel rods. Furthermore, equilibrium delayed energy release is assumed for both steady-state and transient calculations. These approximations limit the accurate representation of the heat generation distribution in space and its variations over time, which are essential for power distribution and thermal-hydraulic coupling calculations. In this paper, an improved energy deposition model is presented in both the spatial and time domains. Spatially, the energy deposition through fission, neutron capture, and slowing-down reactions are explicitly modeled to account for the heat generation from all regions of a reactor core, and a gamma smearing scheme is developed that utilizes the gamma sources from neutron fission and capture. In the time domain, the delayed energy release is modeled by solving an additional equation of delayed heat emitters, similar to the equation of delayed neutron precursors. To allow the explicit heat generation coupling, the interfaces between MPACT and CTF were updated to transfer separate heat sources for different material regions (fuel, clad, moderator and guide tube). The results show that the distributions of the energy deposition between MPACT and MCNP agree very well for various 2-D assembly and quarter-core problems without TH feedback. The MPACT/CTF coupled calculation for the hot full power quarter-core case exhibited a reduced peak pin power by 2.3% and a reduced peak fuel centerline temperature by 17 K when using the explicit energy deposition and heat transfer. The new model also shows a maximum 100 pcm keff effect on assembly depletion problems and an increased overall energy release by 7% in a PWR reactivity-initiated accident (RIA) problem.


Sign in / Sign up

Export Citation Format

Share Document