scholarly journals Application of highly efficient hydrogen generation and storage systems for autonomous energy supply

Author(s):  
A.M Avramenko ◽  
A.A Shevchenko ◽  
N.А Chorna ◽  
A.L Kotenko

Purpose. Development of scientific and engineering solutions to improve the reliability of power supply of stand-alone systems and mitigate the environmental burden by using hydrogen technologies for energy storage. Methodology. The calculation method provides a set of optimal technical solutions for determining the effective operating modes of a stand-alone power supply system for supplying hydrogen to a fuel cell based on the electric load schedules of a particular consumer by using a computational experiment. Findings. Based on the study, a technological scheme of a stand-alone power supply system based on fuel cells was developed, and an approach to the creation of a metal hydride system for accumulating and supplying hydrogen to fuel cells was substantiated. A calculation algorithm was developed that allows calculating the annual energy balance of a specific consumer and selecting the necessary equipment to implement the scheme based on the annual heat and electric load schedule. Originality. An alternative scheme of guaranteed electric power and heat supply for a stand-alone house without using imported fuel is proposed. The advantage of such a scheme is that it is closed because hydrogen is produced on site to power the fuel cell, while the metal hydride hydrogen storage system is capable of performing hydrogen absorption and its release due to the hot and cold water resources available in the system. Practical value. The technology for converting the energy of primary sources by creating a wind-driven energy technological complex using an electrolysis plant and a metal hydride hydrogen storage system will solve the problem of smoothing the irregular electric power supply from renewable sources.

2012 ◽  
Vol 48 (4) ◽  
pp. 1142-1153 ◽  
Author(s):  
Shailendra Jain ◽  
Jin Jiang ◽  
Xinhong Huang ◽  
Srdjan Stevandic

2018 ◽  
Vol 239 ◽  
pp. 01010 ◽  
Author(s):  
Evgeny Tretyakov

The relevance of the work is determined by the need to improve the electrical distribution grids of railways on the basis of digital technologies. The article presents advanced methods of transportation and distribution of electric power in smart power grids of railways based on multi-agent control. The analysis of the power supply system for stationary railroad consumers was performed and advanced ways of their development were defined. These methods should provide increased speed, adaptive determination of restrictions on using electric power equipment, management of mode parameters, sectioning and power flow modes in electrical distribution grids, restoration of power supply after emergency events. The method of adaptive control of transportation and distribution of electric energy in the power supply system of stationary railway consumers is developed based on the hierarchical structure of IEC 61850. This method takes into account the coordination of managing and local controllers in the data exchange environment, the control results and the variable area of responsibility of controllers and their division according to their functional purpose based on the multi-agent approach. The method of power flow control was developed to reduce power losses, increase the capacity of transport channels and ensure the restoration of the normal mode of the electric network by reconfiguring it and controlling active elements based on graph theory. The method takes into account the expected daily load curve, limits on the demand for capacity by active consumers and the possibility of a closed mode of electrical network operation through controlled cross-sections. The simulation results presented on the test circuit have showed the feasibility and efficiency of the proposed approaches.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 542 ◽  
Author(s):  
Prakash Thapa ◽  
Sung Gi Kwon ◽  
Jin Lee ◽  
Gye Choon Park

Background/Objectives: The combustion of fossil fuels and increased number of advanced technology leads to the global warming and climate change. So, to reduce the greenhouse gas emission and conserve the energy we need to use green energy like fuel cell and Li-ion battery system. This hybrid system consists of PEM fuel cell stack, Li-ion battery and bidirectional step up converter and can be used stationary as well as mobile equipment like vehicles.Methods/Statistical analysis: For the analysis of hybrid PEMFC/ Li-ion battery power supply system, portable embedded motor is proposed in this paper. The modeling, design, implementation and performance of hybrid system are demonstrate by using experimental results as well as MATLAB/Simulink.Findings: The simulation results shows that hybrid fuel cell-battery system could provide the continuous power to the sudden changing load and protect the devices. The results also shows that, bidirectional controller can successfully control the fuel cell output and maintain the state of charge of battery at a constant level which provides the significant efficiency of the hybrid power supply system and increased the life-cycle of the system more than 35%.Improvements/Applications: To improve the fuel cell system performance we need to provide the favorable conditions of temperature, pressure, humidity and control the flow rate of reactant gausses. Similarly, due to internal resistance, temperature, material used in manufacturing process, charging and discharging strategy reduces the efficiency as well as life of the battery pack. By using proper voltage balancing methodology we can maintain the similar voltage and prevent from irregular charging. 


Sign in / Sign up

Export Citation Format

Share Document