scholarly journals Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

2016 ◽  
Vol 59 (2) ◽  
pp. 91 ◽  
Author(s):  
Jisoo Choi ◽  
Sohee Kim ◽  
Dong-Ah Shin
2015 ◽  
Vol 33 (1) ◽  
pp. 318-326
Author(s):  
Ana Paula Macedo ◽  
João Paulo Mardegan Issa ◽  
Helton Luiz Aparecido Defino ◽  
Antonio Carlos Shimano

2020 ◽  
Author(s):  
Yukun Du ◽  
Zhao Meng ◽  
Jianyi Li ◽  
Zheng Zhao ◽  
Xiangyang Wang ◽  
...  

Abstract Background: Clinical studies have shown that irreducible atlantoaxial dislocation (IAAD) can achieve reduction, decompression, fixation and fusion by transoral, posterior, and other traditional approaches. The present study aims to introduced a newly designed reduction plate through the retropharyngeal approach and evaluate its feasibility by cadaveric test and finite element analysis.Methods: A cadaveric specimen and a 45-year-old postoperative female patient diagnosed with IAAD who underwent the traditional posterior fixation were enrolled in this scientific study. The retropharyngeal approach involved placing the reduction plate into a cadaveric specimen’s cervical spine. Spiral CT thinly scanning (0.05 mm) from the base of the occipital bone to C7 vertebrae was performed and reconstructed for three-dimensional (3D) finite element analysis using Mimics software based on the Dicom data of two different fixations. Biomechanical distribution was compared between two fixations under different stress conditions, including flexion, extension, bending and rotation, respectively.Results: There was no significant difference in maximum stress between the retropharyngeal reduction plate system and the posterior atlantoaxial pedicle screw fixation system during flexion. Under states of extension, bending and rotation, the maximum stress of the reduction plate system was significantly lower than that of the posterior atlantoaxial pedicle screw fixation system. Both of the maximum stresses between two fixations were far lower than the maximum yield strength (795-827 MPa) and ultimate strength (860-896 MPa) of the titanium alloys. There was no significantly stress concentration between retropharyngeal reduction plate system and the posterior atlantoaxial pedicle screw fixation system under different movement.Conclusions: The cadaveric test showed that it is feasible to place the reduction plate using the retropharyngeal approach. The finite element analysis indicated that the retropharyngeal reduction plate system may provide relatively reliable fixation compared with traditional posterior fixation. A new choice of designing a surgical plan for treating atlantoaxial dislocation is presented.


2020 ◽  
Vol 12 (2) ◽  
pp. 601-608
Author(s):  
Tie‐nan Wang ◽  
Bao‐lin Wu ◽  
Rui‐meng Duan ◽  
Ya‐shuai Yuan ◽  
Ming‐jia Qu ◽  
...  

2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Shady S. Elmasry ◽  
Shihab S. Asfour ◽  
Francesco Travascio

Percutaneous pedicle screw fixation (PPSF) is a well-known minimally invasive surgery (MIS) employed in the treatment of thoracolumbar burst fractures (TBF). However, hardware failure and loss of angular correction are common limitations caused by the poor support of the anterior column of the spine. Balloon kyphoplasty (KP) is another MIS that was successfully used in the treatment of compression fractures by augmenting the injured vertebral body with cement. To overcome the limitations of stand-alone PPSF, it was suggested to augment PPSF with KP as a surgical treatment of TBF. Yet, little is known about the biomechanical alteration occurred to the spine after performing such procedure. The objective of this study was to evaluate and compare the immediate post-operative biomechanical performance of stand-alone PPSF, stand-alone-KP, and KP-augmented PPSF procedures. Novel three-dimensional (3D) finite element (FE) models of the thoracolumbar junction that describes the fractured spine and the three investigated procedures were developed and tested under mechanical loading conditions. The spinal stiffness, stresses at the implanted hardware, and the intradiscal pressure at the upper and lower segments were measured and compared. The results showed no major differences in the measured parameters between stand-alone PPSF and KP-augmented PPSF procedures, and demonstrated that the stand-alone KP may restore the stiffness of the intact spine. Accordingly, there was no immediate post-operative biomechanical advantage in augmenting PPSF with KP when compared to stand-alone PPSF, and fatigue testing may be required to evaluate the long-term biomechanical performance of such procedures.


Sign in / Sign up

Export Citation Format

Share Document