scholarly journals Variation in life-history traits of European anchovy along a latitudinal gradient: a bioenergetics modelling approach

2019 ◽  
Vol 617-618 ◽  
pp. 95-112 ◽  
Author(s):  
M Huret ◽  
K Tsiaras ◽  
U Daewel ◽  
MD Skogen ◽  
P Gatti ◽  
...  
2007 ◽  
Vol 363 (1490) ◽  
pp. 301-319 ◽  
Author(s):  
John M McNamara ◽  
Alasdair I Houston

Organisms in a seasonal environment often schedule activities in a regular way over the year. If we assume that such annual routines have been shaped by natural selection then life-history theory should provide a basis for explaining them. We argue that many life-history trade-offs are mediated by underlying physiological variables that act on various time scales. The dynamics of these variables often preclude considering one period of the year in isolation. In order to capture the essence of annual routines, and many life-history traits, a detailed model of changes in physiological state over the annual cycle is required. We outline a modelling approach based on suitable physiological and ecological state variables that can capture this underlying biology, and describe how models based on this approach can be used to generate a range of insights and predictions.


2015 ◽  
Vol 85 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Szymon Sniegula ◽  
Maria J. Golab ◽  
Szymon M. Drobniak ◽  
Frank Johansson

Author(s):  
Armando Alfaro-Tapia ◽  
Jeniffer K. Alvarez-Baca ◽  
Kévin Tougeron ◽  
Blas Lavandero ◽  
Cécile Le Lann ◽  
...  

2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Sign in / Sign up

Export Citation Format

Share Document