Transport of Solutes and Colloids in Multi-Scale Porous Media Under Single and Multi-Phase Flow

10.33540/746 ◽  
2021 ◽  
Author(s):  
◽  
Enno Tijmen de Vries
2015 ◽  
Vol 114 (2) ◽  
pp. 581-600 ◽  
Author(s):  
P. Kunz ◽  
I. M. Zarikos ◽  
N. K. Karadimitriou ◽  
M. Huber ◽  
U. Nieken ◽  
...  

2020 ◽  
Vol 60 (2) ◽  
pp. 672
Author(s):  
Mojtaba Seyyedi ◽  
Ausama Giwelli ◽  
Cameron White ◽  
Lionel Esteban ◽  
Michael Verrall ◽  
...  

Impacts of fluid–rock geochemical reactions occurring during CO2 injection into underground formations, including CO2 geosequestration, on porosity and single-phase permeability are well documented. However, their impacts on pore structure and multi-phase flow behaviour of porous media and, therefore, on CO2 injectivity and residual trapping potential, are yet unknown. We found that CO2-saturated brine–rock interactions in a carbonate rock led to a decrease in the sweep efficiency of the non-wetting phase (gas) during primary drainage. Furthermore, they led to an increase in the relative permeability of the non-wetting phase, a decrease in the relative permeability of the wetting phase (brine) and a reduction in the residual trapping potential of the non-wetting phase. The impacts of reactions on pore structure shifted the relative permeability cross-point towards more water-wet condition. Finally, calcite dissolution caused a reduction in capillary pressure of the used carbonate rock. For CO2 underground injection applications, such changes in relative permeabilities, residual trapping potential of the non-wetting phase (CO2) and capillary pressure would reduce the CO2 storage capacity and increase the risk of CO2 leakage.


Sign in / Sign up

Export Citation Format

Share Document