scholarly journals The Pore Architecture of the Cystic Fibrosis Transmembrane Conductance Regulator Channel Revealed by Co-Mutation in Pore-Forming Transmembrane Regions

2016 ◽  
pp. 505-515
Author(s):  
F. QIAN ◽  
L. LIU ◽  
Z. LIU ◽  
C. LU

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, there is no direct evidence clearly illustrating the involvement of these transmembrane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of co-mutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co-mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provided functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter.

1993 ◽  
Vol 71 (9) ◽  
pp. 645-649 ◽  
Author(s):  
Xiaodong Wang ◽  
Yoshinori Marunaka ◽  
Ludwik Fedorko ◽  
Sascha Dho ◽  
J. Kevin Foskett ◽  
...  

The Cl− conductance of a mouse fibroblast cell line (LTK− cells) that was stably transfected with the human CFTR (cystic fibrosis transmembrane conductance regulator) complementary DNA was studied. Single Cl− channel activity was observed only after treatment of the cells with forskolin, the single-channel conductance being 6.2 ± 0.2 pS with a linear current–voltage relationship. In CFTR+ cells, the whole-cell current at +90 mV increased from 7.3 ± 2.7 pA/pF (n = 12) to 46.1 ± 11.2 pA/pF (n = 5) after addition of dibutyryl-cyclic AMP (10−4 M) to the bath. Increasing the intracellular Cl− concentration to 150 mM activated linear Cl− currents in the absence of cyclic AMP in CFTR+ (n = 42) but not in CFTR− cells (n = 4). Similar Cl− current was also activated by high intracellular I− concentration. These results indicate that the CFTR-induced Cl− conductance in LTK− cells can be activated by either cyclic AMP or high intracellular halide concentrations.Key words: cystic fibrosis transmembrane conductance regulator (CFTR), chloride channel, cyclic AMP, whole-cell patch clamp, single-channel patch clamp.


Sign in / Sign up

Export Citation Format

Share Document