scholarly journals On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions

Author(s):  
Pavel G. Patseika ◽  
Yauheni A. Rouba ◽  
Kanstantin A. Smatrytski

The purpose of this paper is to construct an integral rational Fourier operator based on the system of Chebyshev – Markov rational functions and to study its approximation properties on classes of Markov functions. In the introduction the main results of well-known works on approximations of Markov functions are present. Rational approximation of such functions is a well-known classical problem. It was studied by A. A. Gonchar, T. Ganelius, J.-E. Andersson, A. A. Pekarskii, G. Stahl and other authors. In the main part an integral operator of the Fourier – Chebyshev type with respect to the rational Chebyshev – Markov functions, which is a rational function of order no higher than n is introduced, and approximation of Markov functions is studied. If the measure satisfies the following conditions: suppμ = [1, a], a > 1, dμ(t) = ϕ(t)dt and ϕ(t) ἆ (t − 1)α on [1, a] the estimates of pointwise and uniform approximation and the asymptotic expression of the majorant of uniform approximation are established. In the case of a fixed number of geometrically distinct poles in the extended complex plane, values of optimal parameters that provide the highest rate of decreasing of this majorant are found, as well as asymptotically accurate estimates of the best uniform approximation by this method in the case of an even number of geometrically distinct poles of the approximating function. In the final part we present asymptotic estimates of approximation of some elementary functions, which can be presented by Markov functions.

Author(s):  
Pavel G. Patseika ◽  
Yauheni A. Rouba

Approximations on the segment [−1, 1] of Markov functions by Abel – Poisson sums of a rational integral operator of Fourier type associated with the Chebyshev – Markov system of algebraic fractions in the case of a fixed number of geometrically different poles are investigated. An integral representation of approximations and an estimate of uniform approximations are found. Approximations of Markov functions in the case when the measure µ satisfies the conditions suppµ = [1, a], a > 1, dµ(t) = φ(t)dt and φ(t) ≍ (t − 1)α on [1, a], a are studied and estimates of pointwise and uniform approximations and the asymptotic expression of the majorant of uniform approximations are obtained. The optimal values of the parameters at which the majorant has the highest rate of decrease are found. As a corollary, asymptotic estimates of approximations on the segment [−1, 1] are given by the method of rational approximation of some elementary Markov functions under study.


Author(s):  
Gennadi I. Malaschonok ◽  
Alexandr V. Seliverstov

We present the possibilities provided by the MathPartner service of calculating definite and indefinite integrals. MathPartner contains software implementation of the Risch algorithm and provides users with the ability to compute antiderivatives for elementary functions. Certain integrals, including improper integrals, can be calculated using numerical algorithms. In this case, every user has the ability to indicate the required accuracy with which he needs to know the numerical value of the integral. We highlight special functions allowing us to calculate complete elliptic integrals. These include functions for calculating the arithmetic-geometric mean and the geometric-harmonic mean, which allow us to calculate the complete elliptic integrals of the first kind. The set also includes the modified arithmetic-geometric mean, proposed by Semjon Adlaj, which allows us to calculate the complete elliptic integrals of the second kind as well as the circumference of an ellipse. The Lagutinski algorithm is of particular interest. For given differentiation in the field of bivariate rational functions, one can decide whether there exists a rational integral. The algorithm is based on calculating the Lagutinski determinant. This year we are celebrating 150th anniversary of Mikhail Lagutinski.


Author(s):  
E. A. Rovba ◽  
V. Yu. Medvedeva

In this paper, we study the approximations of a function |x|α, α > 0 by interpolation rational Lagrange functions on a segment [–1,1]. The zeros of the even Chebyshev – Markov rational functions and a point x = 0 are chosen as the interpolation nodes. An integral representation of an interpolation remainder and an upper bound for the considered uniform approximations are obtained. Based on them, a detailed study is made:a) the polynomial case. Here, the authors come to the famous asymptotic equality of M. N. Hanzburg;b) at a fixed number of geometrically different poles, the upper estimate is obtained for the corresponding uniform approximations, which improves the well-known result of K. N. Lungu;c) when approximating by general Lagrange rational interpolation functions, the estimate of uniform approximations is found and it is shown that at the ends of the segment [–1,1] it can be improved.The results can be applied in theoretical research and numerical methods. 


2015 ◽  
Vol 11 (03) ◽  
pp. 869-892
Author(s):  
Emre Alkan

Using integral representations with carefully chosen rational functions as integrands, we find new families of transcendental numbers that are not U-numbers, according to Mahler's classification, represented by a series whose terms involve rising factorials and reciprocals of binomial coefficients analogous to Apéry type series. Explicit descriptions of these numbers are given as linear combinations with coefficients lying in a suitable real algebraic extension of rational numbers using elementary functions evaluated at arguments belonging to the same field. In this way, concrete examples of transcendental numbers which can be expressed as combinations of classical mathematical constants such as π and Baker periods are given together with upper bounds on their wn measures.


Acta Numerica ◽  
2021 ◽  
Vol 30 ◽  
pp. 327-444
Author(s):  
Ronald DeVore ◽  
Boris Hanin ◽  
Guergana Petrova

Neural networks (NNs) are the method of choice for building learning algorithms. They are now being investigated for other numerical tasks such as solving high-dimensional partial differential equations. Their popularity stems from their empirical success on several challenging learning problems (computer chess/Go, autonomous navigation, face recognition). However, most scholars agree that a convincing theoretical explanation for this success is still lacking. Since these applications revolve around approximating an unknown function from data observations, part of the answer must involve the ability of NNs to produce accurate approximations.This article surveys the known approximation properties of the outputs of NNs with the aim of uncovering the properties that are not present in the more traditional methods of approximation used in numerical analysis, such as approximations using polynomials, wavelets, rational functions and splines. Comparisons are made with traditional approximation methods from the viewpoint of rate distortion, i.e. error versus the number of parameters used to create the approximant. Another major component in the analysis of numerical approximation is the computational time needed to construct the approximation, and this in turn is intimately connected with the stability of the approximation algorithm. So the stability of numerical approximation using NNs is a large part of the analysis put forward.The survey, for the most part, is concerned with NNs using the popular ReLU activation function. In this case the outputs of the NNs are piecewise linear functions on rather complicated partitions of the domain of f into cells that are convex polytopes. When the architecture of the NN is fixed and the parameters are allowed to vary, the set of output functions of the NN is a parametrized nonlinear manifold. It is shown that this manifold has certain space-filling properties leading to an increased ability to approximate (better rate distortion) but at the expense of numerical stability. The space filling creates the challenge to the numerical method of finding best or good parameter choices when trying to approximate.


2014 ◽  
Vol 17 (1) ◽  
pp. 233-244
Author(s):  
Ionela Moale ◽  
Veronika Pillwein

AbstractWe consider the classical problem of finding the best uniform approximation by polynomials of$1/(x-a)^2,$where$a>1$is given, on the interval$[-\! 1,1]$. First, using symbolic computation tools we derive the explicit expressions of the polynomials of best approximation of low degrees and then give a parametric solution of the problem in terms of elliptic functions. Symbolic computation is invoked then once more to derive a recurrence relation for the coefficients of the polynomials of best uniform approximation based on a Pell-type equation satisfied by the solutions.


Sign in / Sign up

Export Citation Format

Share Document