rational interpolation
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 48)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Davide Pradovera ◽  
Fabio Nobile

AbstractIn the field of model order reduction for frequency response problems, the minimal rational interpolation (MRI) method has been shown to be quite effective. However, in some cases, numerical instabilities may arise when applying MRI to build a surrogate model over a large frequency range, spanning several orders of magnitude. We propose a strategy to overcome these instabilities, replacing an unstable global MRI surrogate with a union of stable local rational models. The partitioning of the frequency range into local frequency sub-ranges is performed automatically and adaptively, and is complemented by a (greedy) adaptive selection of the sampled frequencies over each sub-range. We verify the effectiveness of our proposed method with two numerical examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Peichen Zhao ◽  
Yongling Cheng

A linear barycentric rational collocation method (LBRCM) for solving Schrodinger equation (SDE) is proposed. According to the barycentric interpolation method (BIM) of rational polynomial and Chebyshev polynomial, the matrix form of the collocation method (CM) that is easy to program is obtained. The convergence rate of the LBRCM for solving the Schrodinger equation is proved from the convergence rate of linear barycentric rational interpolation. Finally, a numerical example verifies the correctness of the theoretical analysis.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2481
Author(s):  
Len Bos ◽  
Stefano De Marchi

We discuss a generalization of Berrut’s first and second rational interpolants to the case of equally spaced points on a triangle in R2.


Author(s):  
Fabio Nobile ◽  
Davide Pradovera

We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynamical systems. The reduced model over the whole parameter space is built by combining surrogates in frequency only, built at few selected values of the parameters. This, in particular, requires matching the respective poles by solving an optimization problem. If the frequency surrogates are constructed by a suitable rational interpolation strategy, frequency and parameters can both be sampled in an adaptive fashion. This, in general, yields frequency surrogates with different numbers of poles, a situation addressed by our proposed algorithm. Moreover, we explain how our method can be applied even in high-dimensional settings, by employing locally-refined sparse grids in parameter space to weaken the curse of dimensionality. Numerical examples are used to showcase the effectiveness of the method, and to highlight some of its limitations in dealing with unbalanced pole matching, as well as with a large number of parameters.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1401
Author(s):  
Alexei Uteshev ◽  
Ivan Baravy ◽  
Elizaveta Kalinina

We treat the interpolation problem {f(xj)=yj}j=1N for polynomial and rational functions. Developing the approach originated by C. Jacobi, we represent the interpolants by virtue of the Hankel polynomials generated by the sequences of special symmetric functions of the data set like {∑j=1Nxjkyj/W′(xj)}k∈N and {∑j=1Nxjk/(yjW′(xj))}k∈N; here, W(x)=∏j=1N(x−xj). We also review the results by Jacobi, Joachimsthal, Kronecker and Frobenius on the recursive procedure for computation of the sequence of Hankel polynomials. The problem of evaluation of the resultant of polynomials p(x) and q(x) given a set of values {p(xj)/q(xj)}j=1N is also tackled within the framework of this approach. An effective procedure is suggested for recomputation of rational interpolants in case of extension of the data set by an extra point.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251945
Author(s):  
Blaž Krese ◽  
Erik Štrumbelj

The famous Bradley-Terry model for pairwise comparisons is widely used for ranking objects and is often applied to sports data. In this paper we extend the Bradley-Terry model by allowing time-varying latent strengths of compared objects. The time component is modelled with barycentric rational interpolation and Gaussian processes. We also allow for the inclusion of additional information in the form of outcome probabilities. Our models are evaluated and compared on toy data set and real sports data from ATP tennis matches and NBA games. We demonstrated that using Gaussian processes is advantageous compared to barycentric rational interpolation as they are more flexible to model discontinuities and are less sensitive to initial parameters settings. However, all investigated models proved to be robust to over-fitting and perform well with situations of volatile and of constant latent strengths. When using barycentric rational interpolation it has turned out that applying Bayesian approach gives better results than by using MLE. Performance of the models is further improved by incorporating the outcome probabilities.


Sign in / Sign up

Export Citation Format

Share Document