scholarly journals Construction and Analysis of LNG Cold Energy Utilization System

2020 ◽  
Vol 6 (5) ◽  
pp. 267-275
Author(s):  
L. Yan ◽  
Y. Zhou

The theme of this research is the intermediate fluid vaporizer (IFV) gasification system for an offshore liquefied natural gas floating storage regasification unit (LNG-FSRU). Based on reducing the loss of heat exchange and improve the cold energy utilization, an LNG cold energy utilization system combined with Rankine cycle power generation and desalination is proposed. On this basis, six different schemes of working medium combination are simulated and analyzed, and the optimal scheme of working medium combination is found. The results show that the net output power of the system is 5591 kw, and the system exergy efficiency is 30.38%. The annual economic benefit is CNY 39.4 million.

2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 3865-3875
Author(s):  
Shouguang Yao ◽  
Likang Xu ◽  
Liang Tang

The topic of this study is the intermediate fluid vaporizer gasification system for a liquefied natural gas floating storage regasification unit. To reduce the loss of heat exchange, the primary distributary cascade three-level Rankine cycle is optimised based on the cascade three-level Rankine cycle that uses the cold energy of liquefied natural gas to generate power. The optimized primary distributary cascade three-level Rankine cycle is then compared with the original cascade three Rankine cycle established under the same conditions. Then, a secondary distributary cascade three-level Rankine cycle is proposed. Results show that under a liquefied natural gas flow of 175 t/h, the primary distributary cascade three-level Rankine cycle system exhibits a maximum net output power of 4130.72 kW and an exergy efficiency of 23.78%, which is higher than that of the typical cascade three-level Rankine cycle. Moreover, the net output power and exergy efficiency of the primary distributary cascade three-level Rankine cycle system increased by 3.71% and by 3.84%, respectively. The secondary distributary cascade three-level Rankine cycle system exhibits a maximum net output power of 4143.75 kW and an exergy efficiency of 23.85%.


2020 ◽  
pp. 205-205
Author(s):  
Likang Xu ◽  
Guihua Lin

In this paper, based on the idea of reducing heat exchanger exergy destruction and increasing turbine work, a new three-stage cascade Rankine system and a new four-stage cascade Rankine system is proposed to improve the cold energy utilization rate during liquefied natural gas(LNG) gasification on liquefied natural gas-floating storage and regasification unit. Then compare them with the original cascade Rankine cycle established under the same conditions. The results show that under the condition of 175 t/h LNG flow, the maximum net output power of the new three-stage cascade Rankine cycle system is 4593.31 kW, the exergy efficiency is 20.644%. The maximum net output power of the new four-stage cascade Rankine cycle system is 5013.93 kW, and the exergy efficiency is 22.509%. Compared with the original cascade Rankine cycle system, the maximum net output power of the new three-stage cascade Rankine cycle system and the new four-stage cascade Rankine cycle system is increased by 9.41% and 11.45%, respectively, and the system exergy efficiency is increased by 9.29% and 11.28%, respectively.


2018 ◽  
Vol 67 ◽  
pp. 04032 ◽  
Author(s):  
Adhicahyo Prabowo ◽  
Sutrasno Kartohardjono

Cryogenic Power Generation or commonly called Cryopower is the generation of electricity by utilizing cold energy which one is produced at the LNG (liquefied natural gas) Regasification Terminal. Cold energy utilization has been applied in several countries, especially in Japan. In Indonesia, the regasification terminal has been built few, but in the future according to the Government of Indonesia's plan, some natural gas/LNG power plants will be built to meet the national electricity needs. It requires gas infrastructure, one of which is the regasification terminal. The aim of this study is to evaluate the effects of LNG flowrate on working fluid and cooling water flowrates as well as power needed and produced in the combine direct expansion and Rankine cycle processes. The flowrates and power calculations were conducted using UNISIM R390.1. Simulation results showed that the working fluid and cooling water flowrates increase with increasing LNG flowrate. The increased in the working fluid and cooling water flowrates also increased the power needed by the pumps and power produced by the turbines. Overall, the net power produced from the combine cycle increased with increasing the LNG flowrate.


2020 ◽  
Vol 5 (3) ◽  
pp. 321-333
Author(s):  
V. V. Rao ◽  
Zulfan Adi Putra ◽  
M. R. Bilad ◽  
M. D. H. Wirzal ◽  
N. A. H. M. Nordin ◽  
...  

Natural gas is conventionally transported in its liquid form or Liquid Natural Gas (LNG). It is then transported using cryogenic insulated LNG tankers. At receiving terminals, LNG is regasified prior to distributing it through gas distribution system. Seawater has been used as the heat source, which leads to vast amount of cold energy discarded into the water. This work presents the use of LNG cold energy around Melaka Refining Company (MRC). The cold energy is utilized in power generation, propylene refrigeration cycle, and air separation plants. These systems are designed and simulated using a commercial process simulation software. Capital cost (CAPEX) function and revenues of each system are further developed as a function of LNG flowrates. These developed correlations are then used in an optimization problem to seek for the most profitable scenario. The results show that utilizing LNG for air separation unit yields the highest profit compared to power generation and refrigeration plants.


Author(s):  
L N Guo ◽  
B L An ◽  
L B Chen ◽  
J X Chen ◽  
J J Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document