air separation
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 222)

H-INDEX

47
(FIVE YEARS 9)

2022 ◽  
Vol 50 ◽  
pp. 101875
Author(s):  
Mehran Saedi ◽  
Mehdi Mehrpooya ◽  
Adib Shabani ◽  
Andrew Zaitsev ◽  
Andrey Nikitin

Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Odi Fawwaz Alrebei ◽  
Abdulkarem I. Amhamed ◽  
Muftah H. El-Naas ◽  
Mahmoud Hayajnh ◽  
Yasmeen A. Orabi ◽  
...  

Gas turbines must now comply with much stricter emission control regulations. In fact, to combat the greenhouse effect, regulatory authorities have drastically reduced allowable emission levels. For example, in less than 12 years, the United States’ Clean Air Act issued the New Source Performance Standards (NSPS), which tightened the NOx emission margin of natural gas combustion (from 75 ppm to 10 ppm). On the other hand, despite those efforts, the high demand for energy produced by fossil-fueled gas turbines in power plants has resulted in dramatic increases in anthropogenic CO2 and NOx emitted by gas combustors. Most systems responsible for these undesirable emissions are directly linked to power generation, with gas turbines playing a pivotal role. Yet, gas turbines are still widely used in power plants and will continue to meet the growing demand. Therefore, sequestration and separation techniques such as Carbon Capture and Storage (CCS) and Air Separation Units (ASU) are essential to reduce CO2 and NOx emissions while allowing large amounts of power to be generated from these systems. This paper provides an in-depth examination of the current state of the art in alternative working fluids utilized in the power generation industry (i.e., gas turbines, combustion). In addition, this paper highlights the recent contribution of integrating separation techniques, such as air separation, steam methane reforming, and water-gas shifting, to the power generation industry to facilitate a continuous and adequate supply of alternative working fluids.


2021 ◽  
pp. 19
Author(s):  
Ural E. Allajarov ◽  
Ruslan R. Makulov ◽  
Nail Kh. Abdrakhmanov ◽  
Vilena V. Shabanova

Author(s):  
Prasad J. Parulekar

Abstract: The study is been conducted to understand the different techniques to separate nitrogen from atmospheric air. Separation of nitrogen takes place by following techniques: Cryogenic air separation, Pressure swing adsorption and Membrane separation technique. Cryogenic air separation operates at a very low temperature, which uses the principle of rectification to separate nitrogen at a very high purity (99.999%). Pressure swing adsorption rely on the fact that higher the pressure, more the gas is adsorbed which results in high purity (95-99.99%) of nitrogen. Membrane separation technology is the process that uses hollow fibre membranes to separate the constituent gases in air, which gives the purity in the range of 93%-99.5%. After the comparative study, it is understood that membrane separation technique is the most efficient technology based on the cost, purity, flexibility in terms of adjusting the purity, maintenance, availability; it operates without heating and therefore uses less energy than conventional thermal separation processes. Different step designs of membrane separation techniques are discussed. A Process Flow Diagram and Piping Instrumentation Diagram is been added for single step membrane separation technique. Keywords: Atmospheric air, nitrogen, Cryogenic air separation, Pressure swing adsorption, Membrane separation technique.


2021 ◽  
Vol 1 ◽  
pp. 141
Author(s):  
Manuel Bailera ◽  
Takao Nakagaki ◽  
Ryoma Kataoka

Background: The Rist diagram is useful for predicting changes in blast furnaces when the operating conditions are modified. In this paper, we revisit this methodology to provide a general model with additions and corrections. The reason for this is to study a new concept proposal that combines oxygen blast furnaces with Power to Gas technology. The latter produces synthetic methane by using renewable electricity and CO2 to partly replace the fossil input in the blast furnace. Carbon is thus continuously recycled in a closed loop and geological storage is avoided. Methods: The new model is validated with three data sets corresponding to (1) an air-blown blast furnace without auxiliary injections, (2) an air-blown blast furnace with pulverized coal injection and (3) an oxygen blast furnace with top gas recycling and pulverized coal injection. The error is below 8% in all cases. Results: Assuming a 280 tHM/h oxygen blast furnace that produces 1154 kgCO2/tHM, we can reduce the CO2 emissions between 6.1% and 7.4% by coupling a 150 MW Power to Gas plant. This produces 21.8 kg/tHM of synthetic methane that replaces 22.8 kg/tHM of coke or 30.2 kg/tHM of coal. The gross energy penalization of the CO2 avoidance is 27.1 MJ/kgCO2 when coke is replaced and 22.4 MJ/kgCO2 when coal is replaced. Considering the energy content of the saved fossil fuel, and the electricity no longer consumed in the air separation unit thanks to the O2 coming from the electrolyzer, the net energy penalizations are 23.1 MJ/kgCO2 and 17.9 MJ/kgCO2, respectively. Discussion: The proposed integration has energy penalizations greater than conventional amine carbon capture (typically 3.7 – 4.8 MJ/kgCO2), but in return it could reduce the economic costs thanks to diminishing the coke/coal consumption, reducing the electricity consumption in the air separation unit, and eliminating the requirement of geological storage.


Sign in / Sign up

Export Citation Format

Share Document