scholarly journals Characterization of manufacturing uncertainties with applications to uncertainty quantification and robust design optimization

Author(s):  
Dirk Wunsch ◽  
Charles Hirsch

Methodologies to quantify the impact of manufacturing uncertainties in 3D CFD based design strategies have become increasingly available over the past years as well as optimization under uncertainties, aiming at reducing the systems sensitivity to manufacturing uncertainties. This type of non-deterministic simulation depends however strongly on a correct characterization of the manufacturing variability. Experimental data to characterize this variability is not always available or in many cases cannot be sampled in sufficiently high numbers. Principal Component Analysis (PCA) is applied to the sampled geometries and the influence of tolerances classes, sample size and number of retained deformation modes are discussed. It is shown that the geometrical reconstruction accuracy of the deformation modes and reconstruction accuracy of the CFD predictions are not linearly related, which has important implications on the total geometrical variance that needs to be retained. In a second application the characterization of manufacturing uncertainties to a marine propeller is discussed. It is shown that uncertainty quantification and robust design optimization of the marine propeller can successfully be performed on the basis of the derived uncertainties. This leads to a propeller shape that is less sensitive to the manufacturing variability and therefore to a more robust design.

2018 ◽  
Vol 29 ◽  
pp. 289-302 ◽  
Author(s):  
Marco Panzeri ◽  
Andrey Savelyev ◽  
Kirill Anisimov ◽  
Roberto d’Ippolito ◽  
Artur Mirzoyan

2021 ◽  
pp. 1-22
Author(s):  
Jolan Wauters

Abstract In this work, robust design optimization (RDO) is treated, motivated by the increasing desire to account for variability the design phase. The problem is formulated in a multi-objective setting with the objective of simultaneously minimizing the mean of the objective and its variance due to variability of design variables and/or parameters. This allows the designer to choose its robustness level without the need to repeat the optimization as typically encountered when formulated as a single objective. To account for the computational cost that is often encountered in RDO problems, the problem is fitted in a Bayesian optimization framework. The use of surrogate modeling techniques to efficiently solve problems under uncertainty has effectively found its way in the optimization community leading to surrogate-assisted optimization-under-uncertainty schemes. The surrogates are often considered cheap-to-sample black-boxes and are sampled to obtain the desired quantities of interest. However, since the analytical formulation of the surrogates is known, an analytical treatment of the problem is available. To obtain the quantities of interest without sampling an analytical uncertainty propagation through the surrogate is presented. The multi-objective Bayesian optimization framework and the analytical uncertainty quantification are linked together through the formulation of the robust expected improvement (REI), obtaining the novel efficient robust global optimization (ERGO) scheme. The method is tested on a series of test cases to examine its behavior for varying difficulties and validated on an aerodynamic test function which proves the effectiveness of the novel scheme.


Sign in / Sign up

Export Citation Format

Share Document