Observations on a Rare Old-Growth Montane Longleaf Pine Forest in Central North Carolina, USA

2016 ◽  
Vol 36 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Thomas W. Patterson ◽  
Paul A. Knapp
2009 ◽  
Vol 65 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Saskia L. Van De Gevel ◽  
Justin L. Hart ◽  
Henri D. Grissino-Mayer ◽  
Kenneth W. Robinson

2017 ◽  
Vol 37 (4) ◽  
pp. 564-569
Author(s):  
Jack Culpepper ◽  
J.D. Bricken ◽  
Seth D. Hunt ◽  
Rebecca J. Barlow ◽  
John S. Kush ◽  
...  

2002 ◽  
Vol 85 (2) ◽  
pp. 308-316 ◽  
Author(s):  
Theresa L. Pitts-Singer ◽  
James L. Hanula ◽  
Joan L. Walker

2016 ◽  
Author(s):  
Geshere Abdisa Gurmesa ◽  
Xiankai Lu ◽  
Per Gundersen ◽  
Yunting Fang ◽  
Qinggong Mao ◽  
...  

Abstract. Natural abundance of 15N (δ15N) in plants and soils can provide integrated information on ecosystem nitrogen (N) cycling, but it has not been well tested in warm and humid sub-tropical forests. In this study, we examined the measurement of δ15N for its ability to assess changes in N cycling due to increased N deposition in an old-growth broadleaved forest and a secondary pine forest in a high N deposition area in southern China. We measured δ15N of inorganic N in input and output fluxes under ambient N deposition, and N concentration (N %) and δ15N of major ecosystem compartments under ambient and after decadal N addition at 50 kg N ha−1 yr−1. Our results showed that the N deposition was δ15N-depleted (−12 ‰) mainly due to high input of depleted NH4+-N. Plant leafs in both forest were also δ15N-depleted (−4 to −6 ‰). The old-growth forest had higher plant and soil N %, and was more 15N-enriched in most ecosystem compartments relative to the pine forest. Nitrogen addition did not significantly affect N % in both forests, indicating that the ecosystem pools are already N-rich. Soil δ15N was not changed significantly by the N addition in both forests. However, the N addition significantly increased the δ15N of plants toward the 15N signature of the added N (~ 0 ‰), indicating incorporation of added N into plants. Thus, plant δ15N was sensitive to ecosystem N input manipulation although N % was unchanged in these N-rich sub-tropical forests. We interpret the depleted δ15N values of plants as an imprint from the high and δ15N-depleted N deposition. The signal from the input (deposition or N addition) may override the enrichment effects of fractionation during the steps of N cycling that are observed in most warm and humid forests. Thus, interpretation of ecosystem δ15N values from high N deposition regions need to include data on the deposition δ15N signal.


2002 ◽  
Vol 32 (11) ◽  
pp. 1984-1991 ◽  
Author(s):  
Michael A Battaglia ◽  
Pu Mou ◽  
Brian Palik ◽  
Robert J Mitchell

Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine forest and spatial pattern of understory light availability were investigated by comparing three retention harvest treatments: single-tree, small-group, large-group, and an uncut control. The harvests retained similar residual basal area but the spatial patterns of the residual trees differed. Hemispherical photographs were taken at 300 stations to calculate gap light index (GLI), an estimate of understory light availability. Stand-level mean, variation, and spatial distribution of GLI were determined for each treatment. By aggregating residual trees, stand mean GLI increased by 20%, as well as its spatial variation. Spatial autocorrelation of GLI increased as the size of the canopy gaps increased and the gaps were better defined; thus, the predictability of GLI was enhanced. The ranges of detrended semivariograms were increased from the control to the large-group harvest indicating the spatial patterns of understory GLI became coarser textured. Our results demonstrated that aggregated canopy structure of longleaf pine forest will facilitate longleaf pine seedling regeneration.


Sign in / Sign up

Export Citation Format

Share Document