scholarly journals Orbits Theory. A Complete Proof of the Collatz Conjecture

Author(s):  
Jorge Crespo Alvarez

In this work a complete proof of the Collatz Conjecture is presented. The solution assumes as hypothesis that Collatz's Conjecture is a consequence. We found that every natural number n_i∈N can be calculated starting from 1, using the function n_i=((2^(i-Ω)-C))⁄3^Ω , where: i≥0 represents the number of steps (operations of multiplications by two subtractions of one and divisions by three) needed to get from 1 to n_i, Ω≥0 represents the number of multiplications by three required and 0≤C≤2^(i-⌊i/3⌋ )-2^((i mod 3)) 3^⌊i/3⌋ is an accumulative constant that takes into account the order in which the operations of multiplication and division have been performed. Reversing the inversion, we have obtained the function: ((3^Ω n_i+C))⁄2^(i-Ω)=1 that proves that Collatz Conjecture it’s a consequence of the above and also proofs that Collatz Conjecture it’s true since ((3^Ω n_i+C))⁄2^(i-Ω) is the recursive form of the Collatz’s function.

2021 ◽  
Author(s):  
Jorge Crespo Alvarez

In this work a complete proof of the Collatz Conjecture is presented. The solution assumes as hypothesis that Collatz's Conjecture is a consequence. We found that every natural number n_i∈N can be calculated starting from 1, using the function n_i=((2^(i-Ω)-C))⁄3^Ω , where: i≥0 represents the number of steps (operations of multiplications by two subtractions of one and divisions by three) needed to get from 1 to n_i, Ω≥0 represents the number of multiplications by three required and 0≤C≤2^(i-⌊i/3⌋ )-2^((i mod 3)) 3^⌊i/3⌋ is an accumulative constant that takes into account the order in which the operations of multiplication and division have been performed. Reversing the inversion, we have obtained the function: ((3^Ω n_i+C))⁄2^(i-Ω)=1 that proves that Collatz Conjecture it’s a consequence of the above and also proofs that Collatz Conjecture it’s true since ((3^Ω n_i+C))⁄2^(i-Ω) is the recursive form of the Collatz’s function.


2020 ◽  
Vol 12 (1) ◽  
pp. 112-127
Author(s):  
Amauri Gutierrez

AbstractCollatz conjecture states that iterating the map that takes even natural number n to {n \over 2} and odd natural number n to 3n + 1, will eventually obtain 1. In this paper a new generalization of the Collatz conjecture is analyzed and some interesting results are obtained. Since Collatz conjecture can be seen as a particular case of the generalization introduced in this articule, several more general conjectures are also presented.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Ren

Collatz Conjecture (3x+1 problem) states any natural number x will return to 1 after 3⁎x+1 computation (when x is odd) and x/2 computation (when x is even). In this paper, we propose a new approach for possibly proving Collatz Conjecture (CC). We propose Reduced Collatz Conjecture (RCC)—any natural number x will return to an integer that is less than x. We prove that RCC is equivalent to CC. For proving RCC, we propose exploring laws of Reduced Collatz Dynamics (RCD), i.e., from a starting integer to the first integer less than the starting integer. RCC can also be stated as follows: RCD of any natural number exists. We prove that RCD is the components of original Collatz dynamics (from a starting integer to 1); i.e., RCD is more primitive and presents better properties. We prove that RCD presents unified structure in terms of (3⁎x+1)/2 and x/2, because 3⁎x+1 is always followed by x/2. The number of forthcoming (3⁎x+1)/2 computations can be determined directly by inputting x. We propose an induction method for proving RCC. We also discover that some starting integers present RCD with short lengths no more than 7. Hence, partial natural numbers are proved to guarantee RCC in this paper, e.g., 0 module 2; 1 module 4; 3 module 16; 11 or 23 module 32; 7, 15, or 59 module 128. The future work for proving CC can follow this direction, to prove that RCD of left portion of natural numbers exists.


2018 ◽  
Vol 15 ◽  
pp. 8120-8132
Author(s):  
Anatoliy Nikolaychuk

For any natural number was created the supplement sequence, that is convergent together with the original sequence. The parameter - index was defined, that is the same tor both sequences. This new method provides the following results: All natural numbers were distributed into different classes according to the corresponding indexes; The analytic formulas ( not by computer performed routine calculations) were produced, the formulas for groups of consecutive natural numbers of different lengths, having the same index; The new algorithm to find index for any natural number was constructed and proved.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


Axiomathes ◽  
2021 ◽  
Author(s):  
Andrew Powell

AbstractThis article provides a survey of key papers that characterise computable functions, but also provides some novel insights as follows. It is argued that the power of algorithms is at least as strong as functions that can be proved to be totally computable in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set theory. Moreover, it is claimed that typed systems of the lambda calculus give rise naturally to a functional interpretation of rich systems of types and to a hierarchy of ordinal recursive functionals of arbitrary type that can be reduced by substitution to natural number functions.


1986 ◽  
Vol 9 (4) ◽  
pp. 401-419
Author(s):  
Glynn Winskel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document