scholarly journals Dense Complete Set For NP

Author(s):  
Frank Vega

A sparse language is a formal language such that the number of strings of length $n$ is bounded by a polynomial function of $n$. We create a class with the opposite definition, that is a class of languages that are dense instead of sparse. We define a dense language on $m$ as a formal language (a set of binary strings) where there exists a positive integer $n_{0}$ such that the counting of the number of strings of length $n \geq n_{0}$ in the language is greater than or equal to $2^{n - m}$ where $m$ is a real number and $0 < m \leq 1$. We call the complexity class of all dense languages on $m$ as $DENSE(m)$. We prove that there exists an $\textit{NP--complete}$ problem that belongs to $DENSE(m)$ for every possible value of $0 < m \leq 1$.

Author(s):  
Frank Vega

A sparse language is a formal language such that the number of strings of length $n$ is bounded by a polynomial function of $n$. We create a class with the opposite definition, that is a class of languages that are dense instead of sparse. We define a dense language on $m$ as a formal language (a set of binary strings) where there exists a positive integer $n_{0}$ such that the counting of the number of strings of length $n \geq n_{0}$ in the language is greater than or equal to $2^{n - m}$ where $m$ is a real number and $0 &lt; m \leq 1$. We call the complexity class of all dense languages on $m$ as $DENSE(m)$. We prove that there exists an $\textit{NP--complete}$ problem that belongs to $DENSE(m)$ for every possible value of $0 &lt; m \leq 1$.


Author(s):  
Ya-Li Li ◽  
Jie Wu

For any positive integer [Formula: see text], let [Formula: see text] be the number of solutions of the equation [Formula: see text] with integers [Formula: see text], where [Formula: see text] is the integral part of real number [Formula: see text]. Recently, Luca and Ralaivaosaona gave an asymptotic formula for [Formula: see text]. In this paper, we give an asymptotic development of [Formula: see text] for all [Formula: see text]. Moreover, we prove that the number of such partitions is even (respectively, odd) infinitely often.


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


2001 ◽  
Vol 34 (44) ◽  
pp. 9555-9567 ◽  
Author(s):  
Tomohiro Sasamoto ◽  
Taro Toyoizumi ◽  
Hidetoshi Nishimori

2007 ◽  
Vol 20 (3) ◽  
pp. 499-506
Author(s):  
Iskandar Karapetyan

Channel routing is an important phase of physical design of LSI and VLSI chips. The channel routing method was first proposed by Akihiro Hashimoto and James Stevens [1]. The method was extensively studied by many authors and applied to different technologies. At present there are known many effective heuristic algorithms for channel routing. A. LaPaugh [2] proved that the restrictive routing problem is NP-complete. In this paper we prove that for every positive integer k there is a restrictive channel C for which ?(C)>? (HG)+L(VG)+k, where ? (C) is the thickness of the channel, ?(HG) is clique number of the horizontal constraints graph HG and L(VG) is the length of the longest directed path in the vertical constraints graph VG.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


Author(s):  
Lance Fortnow

This chapter demonstrates several approaches for dealing with hard problems. These approaches include brute force, heuristics, and approximation. Typically, no single technique will suffice to handle the difficult NP problems one needs to solve. For moderate-sized problems one can search over all possible solutions with the very fast computers available today. One can use algorithms that might not work for every problem but do work for many of the problems one cares about. Other algorithms may not find the best possible solution but still a solution that's good enough. Other times one just cannot get a solution for an NP-complete problem. One has to try to solve a different problem or just give up.


Sign in / Sign up

Export Citation Format

Share Document