scholarly journals Ekstraksi Click Stream Data Web E-Commerce Menggunakan Web Usage Mining

2021 ◽  
Vol 7 (2) ◽  
pp. 65-72
Author(s):  
Kartina Diah Kusuma Wardani

E-Commerce berkembang pesat dalam world wide web hingga menghasilkan berbagai jenis data yang dapat dianalisa lebih lanjut untuk berbagai keperluan seperti personifikasi web, profiling customer, dan sebagainya. Salah satu jenis data yang dihasilkan e-Commerce adalah click stream data web yang merekam aktivitas visitor web dalam bentuk log data selama berinteraksi pada laman web. Penelitian ini mengekstraksi click stream data web e-commerce untuk mendapatkan pola interaksi konsumen terhadap halaman web selama mengunjungi web e-commerce. Berdasarkan jenis data yang diekstrak maka web usage mining digunakan untuk ekstraksi pola dari click stream data yang berbentuk log data. Teknik mining yang dianalisa terhadap log data e-commerce pada penelitian ini terdiri dari frequent itemset, asociation rules, dan frequence sequence mining. Frequent itemset menghasilkan halaman web yang paling sering diakses oleh visitor. Association rules menghasilkan pola kemungkinan halaman web yang akan diakses visitor jika visitor mengakses halaman-halamn tertentu. Frequence sequence mining mendapatkan pola urutan halaman web yang paling sering diakses oleh visitor web e-commerce saat berinteraksi pada laman web. Pola urutan halaman yang diakses visitor menunjukkan urutan kebiasaan visitor mengunjungi e-commerce. Sedangkan teknik mining yang diimplementasikan untuk menghasilkan pola akses visitor pada penelitian ini adalah Frequence sequence mining. Hasil ekstraksi dari penelitian ini menunjukkan ada enam halaman web yang paling sering diakses oleh konsumen dengan berbagai pola urutan aksesnya.

Author(s):  
Wen-Chen Hu ◽  
Hung-Jen Yang ◽  
Chung-wei Lee ◽  
Jyh-haw Yeh

World Wide Web data mining includes content mining, hyperlink structure mining, and usage mining. All three approaches attempt to extract knowledge from the Web, produce some useful results from the knowledge extracted, and apply the results to certain real-world problems. The first two apply the data mining techniques to Web page contents and hyperlink structures, respectively. The third approach, Web usage mining (the theme of this article), is the application of data mining techniques to the usage logs of large Web data repositories in order to produce results that can be applied to many practical subjects, such as improving Web sites/pages, making additional topic or product recommendations, user/customer behavior studies, and so forth. This article provides a survey and analysis of current Web usage mining technologies and systems. A Web usage mining system must be able to perform five major functions: (i) data gathering, (ii) data preparation, (iii) navigation pattern discovery, (iv) pattern analysis and visualization, and (v) pattern applications. Many Web usage mining technologies have been proposed, and each technology employs a different approach. This article first describes a generalized Web usage mining system, which includes five individual functions. Each system function is then explained and analyzed in detail. Related surveys of Web usage mining techniques also can be found in Hu, et al. (2003) and Kosala and Blockeel (2000).


Author(s):  
XIANGJI HUANG

A common problem in mining association rules or sequential patterns is that a large number of rules or patterns can be generated from a database, making it impossible for a human analyst to digest the results. Solutions to the problem include, among others, using interestingness measures to identify interesting rules or patterns and pruning rules that are considered redundant. Various interestingness measures have been proposed, but little work has been reported on the effectiveness of the measures on real-world applications. We present an application of Web usage mining to a large collection of Livelink log data. Livelink is a web-based product of Open Text Corporation, which provides automatic management and retrieval of different types of information objects over an intranet, an extranet or the Internet. We report our experience in preprocessing raw log data, mining association rules and sequential patterns from the log data, and identifying interesting rules and patterns by use of interestingness measures and some pruning methods. In particular, we evaluate a number of interestingness measures in terms of their effectiveness in finding interesting association rules and sequential patterns. Our results show that some measures are much more effective than others.


2012 ◽  
Vol 3 (4) ◽  
pp. 92-94
Author(s):  
SUJATHA PADMAKUMAR ◽  
◽  
Dr.PUNITHAVALLI Dr.PUNITHAVALLI ◽  
Dr.RANJITH Dr.RANJITH

Author(s):  
Siriporn Chimphlee ◽  
Naomie Salim ◽  
Mohd Salihin Bin Ngadiman ◽  
Witcha Chimphlee

2013 ◽  
Vol 54 ◽  
pp. 66-72 ◽  
Author(s):  
Stephen G. Matthews ◽  
Mario A. Gongora ◽  
Adrian A. Hopgood ◽  
Samad Ahmadi

Author(s):  
Yongjian Fu

With the rapid development of the World Wide Web or the Web, many organizations now put their information on the Web and provide Web-based services such as online shopping, user feedback, technical support, and so on. Understanding Web usage through data mining techniques is recognized as an important area.


Sign in / Sign up

Export Citation Format

Share Document