IgE specific for milk allergen components in patients with non-IgE-mediated, milk-related gastrointestinal food allergy having positive milk-specific IgE : A retrospective study

Author(s):  
Masayuki Akashi
2021 ◽  
Vol 2 ◽  
Author(s):  
Rosan Meyer ◽  
Claire De Koker ◽  
Robert Dziubak ◽  
Heather Godwin ◽  
Kate Reeve ◽  
...  

Background: Oral food challenges remain the most reliable method for allergy confirmation. Although consensus guidelines have been published to unify Immunoglobulin E (IgE)-mediated challenges, this does not exist for non-IgE mediated gastrointestinal allergies outside of Food Protein Induced Enterocolitis Syndrome. We therefore set out to establish the use of home introduction protocols (HIP) for confirmation of food allergy for milk, soya, egg and wheat using a ladder approach in children with non-IgE mediated allergy.Materials and Methods: Patients with suspected non-IgE mediated gastrointestinal allergies (0–16 years) were recruited following symptom improvement on an elimination diet. All children had skin prick or specific IgE tests to rule out IgE-mediated allergies prior to suggestion the HIP. Number of trials and outcome was documented. HIPs were developed using a published ladder approach for cow's milk as baseline and final dose was calculated based on guidelines for food protein induced enterocolitis syndrome and portions for age from the National Diet and Nutrition Survey. First foods were baked/highly processed and every 4th day patients moved to a more unprocessed/unheated food.Results: From 131 recruited patients, 117 (89.3%) followed the HIP for food allergens. No adverse events were documented. In more than 50% of cases one attempt at the HIP was sufficient to establish allergy status, but many required 2–5 attempts before the outcome was clear. About half of the children were fully tolerant to foods they initially eliminated: 36, 26 and 30% were partially tolerant to milk, soya, and egg and only 15% achieved partial tolerance to wheat. Wheat was the allergen introduced earliest, followed by soya, cow's milk and egg.Conclusions: This study indicates that home HIPs are safe in non-IgE mediated gastrointestinal food allergy and that the ladder approach may be useful in re-introducing allergens in children at home with non-IgE mediated gastrointestinal allergies. From this study we can also conclude that tolerance to processed/baked allergens was observed in many children. Further studies should be performed on the HIP and ideally reintroduction should occur pre-defined time intervals.


2013 ◽  
Vol 131 (2) ◽  
pp. 590-592.e6 ◽  
Author(s):  
Hideaki Morita ◽  
Ichiro Nomura ◽  
Kanami Orihara ◽  
Koichi Yoshida ◽  
Akira Akasawa ◽  
...  

2016 ◽  
Vol 137 (2) ◽  
pp. AB241
Author(s):  
Kanami Orihara ◽  
Ichiro Nomura ◽  
Tetsuo Shoda ◽  
Hideaki Morita ◽  
Hiroko Suzuki ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3193
Author(s):  
Bilal Alashkar Alhamwe ◽  
Laura A. P. M. Meulenbroek ◽  
Désirée H. Veening-Griffioen ◽  
Tjalling M. D. Wehkamp ◽  
Fahd Alhamdan ◽  
...  

Immunoglobulin E (IgE)-mediated allergy against cow’s milk protein fractions such as whey is one of the most common food-related allergic disorders of early childhood. Histone acetylation is an important epigenetic mechanism, shown to be involved in the pathogenesis of allergies. However, its role in food allergy remains unknown. IgE-mediated cow’s milk allergy was successfully induced in a mouse model, as demonstrated by acute allergic symptoms, whey-specific IgE in serum, and the activation of mast cells upon a challenge with whey protein. The elicited allergic response coincided with reduced percentages of regulatory T (Treg) and T helper 17 (Th17) cells, matching decreased levels of H3 and/or H4 histone acetylation at pivotal Treg and Th17 loci, an epigenetic status favoring lower gene expression. In addition, histone acetylation levels at the crucial T helper 1 (Th1) loci were decreased, most probably preceding the expected reduction in Th1 cells after inducing an allergic response. No changes were observed for T helper 2 cells. However, increased histone acetylation levels, promoting gene expression, were observed at the signal transducer and activator of transcription 6 (Stat6) gene, a proallergic B cell locus, which was in line with the presence of whey-specific IgE. In conclusion, the observed histone acetylation changes are pathobiologically in line with the successful induction of cow’s milk allergy, to which they might have also contributed mechanistically.


2020 ◽  
Vol 2 (1) ◽  
pp. 119-123
Author(s):  
Amber N. Pepper ◽  
Panida Sriaroon ◽  
Mark C. Glaum

Food additives are natural or synthetic substances added to foods at any stage of production to enhance flavor, texture, appearance, preservation, safety, or other qualities. Common categories include preservatives and antimicrobials, colorings and dyes, flavorings, antioxidants, stabilizers, and emulsifiers. Natural substances rather than synthetics are more likely to cause hypersensitivity. Although rare, food additive hypersensitivity should be suspected in patients with immunoglobulin E (IgE)-mediated reactions to multiple, unrelated foods, especially if the foods are prepared outside of the home or when using commercial products. A complete and thorough history is vital. Skin prick testing and/or specific IgE blood testing to food additives, if available, additive avoidance diets, and blind oral challenges can help establish the diagnosis. Once an allergy to a food additive is confirmed, management involves avoidance and, if necessary, carrying self-injectable epinephrine.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rebecca Czolk ◽  
Julia Klueber ◽  
Martin Sørensen ◽  
Paul Wilmes ◽  
Françoise Codreanu-Morel ◽  
...  

Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (eg, peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes.


Sign in / Sign up

Export Citation Format

Share Document