scholarly journals Expression, Characterization and Its Deinking Potential of a Thermostable Xylanase From Planomicrobium glaciei CHR43

Author(s):  
Zhaoxing Liu ◽  
Tingting Shao ◽  
Yan Li ◽  
Bin Wu ◽  
Honghua Jia ◽  
...  

Genome mining is more and more widely used in identifying new enzymes from database. In the present study, we reported a putative xylanase, Pg-Xyn (WP_053166147.1), which originated from a psychrotolerant strain Planomicrobium glaciei CHR 43, and was identified from Genbank by genome mining. Sequence analysis and homology modeling showed that Pg-Xyn belongs to glycosyl hydrolase family 10. On the basis of heterologous expression in E. coli and biochemical characterization, we found Pg-Xyn was most active at pH 9.0 and 80°C and exhibited good stability from pH 5.0 to 12.0 and below 90°C. Pg-Xyn was slightly activated in the presence of Ca2+ and Mg2+, while it was strongly inhibited by Mn2+. The analysis of hydrolysis products showed that Pg-Xyn was an endo-β-1,4-xylanase. In addition, Pg-Xyn performed good deinking ability in a paper deinking test. In consideration of its unique properties, Pg-Xyn might be a promising candidate for application in the paper and pulp industries.

2005 ◽  
Vol 71 (9) ◽  
pp. 5138-5144 ◽  
Author(s):  
ChoongSoo Yun ◽  
Daiki Amakata ◽  
Yasuhiro Matsuo ◽  
Hideyuki Matsuda ◽  
Makoto Kawamukai

ABSTRACT The betaproteobacterium Mitsuaria chitosanitabida (formerly Matsuebacter chitosanotabidus) 3001 produces a chitosanase (ChoA) that is classified in glycosyl hydrolase family 80. While many chitosanase genes have been isolated from various bacteria to date, they show limited homology to the M. chitosanitabida 3001 chitosanase gene (choA). To investigate the phylogenetic distribution of chitosanases analogous to ChoA in nature, we identified 67 chitosan-degrading strains by screening and investigated their physiological and biological characteristics. We then searched for similarities to ChoA by Western blotting and Southern hybridization and selected 11 strains whose chitosanases showed the most similarity to ChoA. PCR amplification and sequencing of the chitosanase genes from these strains revealed high deduced amino acid sequence similarities to ChoA ranging from 77% to 99%. Analysis of the 16S rRNA gene sequences of the 11 selected strains indicated that they are widely distributed in the β and γ subclasses of Proteobacteria and the Flavobacterium group. These observations suggest that the ChoA-like chitosanases that belong to family 80 occur widely in a broad variety of bacteria.


2021 ◽  
Vol 145 ◽  
pp. 109742
Author(s):  
Caleb R. Schlachter ◽  
Amanda C. McGee ◽  
Pongkwan N. Sitasuwan ◽  
Gary C. Horvath ◽  
Nanda G. Karri ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Jeffrey G Linger ◽  
Larry E Taylor ◽  
John O Baker ◽  
Todd Vander Wall ◽  
Sarah E Hobdey ◽  
...  

2005 ◽  
Vol 61 (a1) ◽  
pp. c197-c197
Author(s):  
C. De Ranter ◽  
S. Sansen ◽  
K. Gebruers ◽  
K. Brijs ◽  
C. M. Courtin ◽  
...  

2005 ◽  
Vol 391 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Manuel Ferrer ◽  
Olga V. Golyshina ◽  
Francisco J. Plou ◽  
Kenneth N. Timmis ◽  
Peter N. Golyshin

Ferroplasma acidiphilum strain Y (DSM 12658), a ferrous iron-oxidizing, acidophilic and mesophilic archaeon, was found to produce a membrane-bound α-glucosidase (αGluFa) showing no significant similarity to any of the known glycoside hydrolases classified in different families and having an unusual catalytic site consisting of a threonine and a histidine residue. The highest α-glucosidase activity was found at low pH, 2.4–3.5, and the substrate preference order was: sucrose>maltose>maltotriose ≫maltotetraose≫malto-oligosaccharides from maltopentaose to maltoheptaose⋙soluble starch (kcat/Km was 293.0, 197.0, 18.8, 0.3 and 0.02 s−1·mM−1 respectively). The enzyme was able to transfer glucosyl groups from maltose as donor, to produce exclusively maltotriose (up to 300 g/l). Chemical modification and electrospray ionization MS analysis of 5-fluoro-α-D-glucopyranosyl-enzyme derivatives, coupled with site-directed mutagenesis, strongly suggested that the putative catalytic nucleophile in this enzyme is Thr212. Iron was found to be essential for enzyme activity and integrity, and His390 was shown to be essential for iron binding. These results suggest that the metalloenzyme αGluFa is a new member of the glycosyl hydrolase family that uses a novel mechanism for sugar glycosylation and/or transglycosylation.


Sign in / Sign up

Export Citation Format

Share Document