scholarly journals Preservation of Fluorescence Signal and Imaging Optimization for Integrated Light and Electron Microscopy

Author(s):  
Pieter Baatsen ◽  
Sergio Gabarre ◽  
Katlijn Vints ◽  
Rosanne Wouters ◽  
Dorien Vandael ◽  
...  

Life science research often needs to define where molecules are located within the complex environment of a cell or tissue. Genetically encoded fluorescent proteins and or fluorescence affinity-labeling are the go-to methods. Although recent fluorescent microscopy methods can provide localization of fluorescent molecules with relatively high resolution, an ultrastructural context is missing. This is solved by imaging a region of interest with correlative light and electron microscopy (CLEM). We have adopted a protocol that preserves both genetically-encoded and antibody-derived fluorescent signals in resin-embedded cell and tissue samples and provides high-resolution electron microscopy imaging of the same thin section. This method is particularly suitable for dedicated CLEM instruments that combine fluorescence and electron microscopy optics. In addition, we optimized scanning EM imaging parameters for samples of varying thicknesses. These protocols will enable rapid acquisition of CLEM information from samples and can be adapted for three-dimensional EM.

2021 ◽  
Author(s):  
Viola Oorschot ◽  
Jillian C Danne ◽  
Benjamin Lindsey ◽  
Jan Kaslin ◽  
Georg Ramm

Immuno- correlative light and electron microscopy (iCLEM) combines ultrastructural information obtained from high resolution electron microscopy with the use of genetically encoded or cytochemical markers. Immuno-CLEM takes advantage of the antigenicity preserved by Tokuyasu sample preparation to identify, quantify and characterise heterogeneous cell populations in small organisms, organs and tissue of healthy and diseased states. iCLEM can be used in combination with scanning EM (SEM), scanning TEM (STEM), and transmission EM (TEM). These protocols are well-suited, for example, for investigating neural stem and progenitor cell populations of the vertebrate nerve system and are available as separate protocols on protocol.io. Here, a method for iCLEM-TEM is described using an adult zebrafish telencephalon brain as a model. This organ is small in size allowing the complete dorsal telencephalic niche to be visualised in sections, and has diverse cell profiles and regenerative potential of local neural stem and progenitor cells. iCLEM-TEM provides high resolution ultrastructural detail of cells, and consecutive ultrathin (62-70 nm) tissue sections can be examined using different labelling techniques involving the use of immunofluorescent and immunogold markers.


Sign in / Sign up

Export Citation Format

Share Document