scholarly journals An Active Fraction of Trillium tschonoskii Promotes the Regeneration of Intestinal Epithelial Cells After Irradiation

Author(s):  
Feiling Song ◽  
Sihan Wang ◽  
Xu Pang ◽  
Zeng Fan ◽  
Jie Zhang ◽  
...  

Despite significant scientific advances toward the development of safe and effective radiation countermeasures, no drug has been approved for use in the clinic for prevention or treatment of radiation-induced acute gastrointestinal syndrome (AGS). Thus, there is an urgent need to develop potential drugs to accelerate the repair of injured intestinal tissue. In this study, we investigated that whether some fractions of Traditional Chinese Medicine (TCM) have the ability to regulate intestinal crypt cell proliferation and promotes crypt regeneration after radiation. By screening the different supplements from a TCM library, we found that an active fraction of the rhizomes of Trillium tschonoskii Maxim (TT), TT-2, strongly increased the colony-forming ability of irradiated rat intestinal epithelial cell line 6 (IEC-6) cells. TT-2 significantly promoted the proliferation and inhibited the apoptosis of irradiated IEC-6 cells. Furthermore, in a small intestinal organoid radiation model, TT-2 promoted irradiated intestinal organoid growth and increased Lgr5+ intestinal stem cell (ICS) numbers. More importantly, the oral administration of TT-2 remarkably enhanced intestinal crypt cell proliferation and promoted the repair of the intestinal epithelium of mice after abdominal irradiation (ABI). Mechanistically, TT-2 remarkably activated the expression of ICS-associated and proliferation-promoting genes and inhibited apoptosis-related gene expression. Our data indicate that active fraction of TT can be developed into a potential oral drug for improving the regeneration and repair of intestinal epithelia that have intestinal radiation damage.

2010 ◽  
Vol 252 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Carel W. le Roux ◽  
Cynthia Borg ◽  
Katharina Wallis ◽  
Royce P. Vincent ◽  
Marco Bueter ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 149 (1) ◽  
pp. 291-301 ◽  
Author(s):  
Philip E. Dubé ◽  
Katherine J. Rowland ◽  
Patricia L. Brubaker

Chronic administration of glucagon-like peptide-2 (GLP-2) induces intestinal growth and crypt cell proliferation through an indirect mechanism requiring IGF-I. However, the intracellular pathways through which IGF-I mediates GLP-2-induced epithelial tropic signaling remain undefined. Because β-catenin and Akt are important regulators of crypt cell proliferation, we hypothesized that GLP-2 activates these signaling pathways through an IGF-I-dependent mechanism. In this study, fasted mice were administered Gly2-GLP-2 or LR3-IGF-I (positive control) for 0.5–4 h. Nuclear translocation of β-catenin in non-Paneth crypt cells was assessed by immunohistochemistry and expression of its downstream proliferative markers, c-myc and Sox9, by quantitative RT-PCR. Akt phosphorylation and activation of its targets, glycogen synthase kinase-3β and caspase-3, were determined by Western blot. IGF-I receptor (IGF-IR) and IGF-I signaling were blocked by preadministration of NVP-AEW541 and through the use of IGF-I knockout mice, respectively. We found that GLP-2 increased β-catenin nuclear translocation in non-Paneth crypt cells by 72 ± 17% (P < 0.05) and increased mucosal c-myc and Sox9 mRNA expression by 90 ± 20 and 376 ± 170%, respectively (P < 0.05–0.01), with similar results observed with IGF-I. This effect of GLP-2 was prevented by blocking the IGF-IR as well as ablation of IGF-I signaling. GLP-2 also produced a time- and dose-dependent activation of Akt in the intestinal mucosa (P < 0.01), most notably in the epithelium. This action was reduced by IGF-IR inhibition but not IGF-I knockout. We concluded that acute administration of GLP-2 activates β-catenin and proliferative signaling in non-Paneth murine intestinal crypt cells as well as Akt signaling in the mucosa. However, IGF-I is required only for the GLP-2-induced alterations in β-catenin.


1997 ◽  
Vol 273 (1) ◽  
pp. E77-E84 ◽  
Author(s):  
C. H. Tsai ◽  
M. Hill ◽  
S. L. Asa ◽  
P. L. Brubaker ◽  
D. J. Drucker

Glucagon-like peptide-2 (GLP-2) has been shown to promote intestinal epithelial proliferation. We studied crypt cell proliferation, enterocyte cell death, and feeding behavior in GLP-2-treated mice. GLP-2 had no effect on food consumption [7.7 +/- 0.3 vs. 8.0 +/- 0.4 g/day, saline (control) vs. GLP-2-treated mice, P = not significant]; however, GLP-2 increased the crypt cell proliferation rate (46.0 +/- 1 vs. 57 +/- 5%, control vs. GLP-2, P < 0.01) and decreased the enterocyte apoptotic rate (5.9 +/- 0.7 vs. 2.8 +/- 0.2% apoptotic cells, control vs. GLP-2, P < 0.05) in small bowel (SB) epithelium. GLP-2 induced a significant increase in SB weight (1.3- to 1.75-fold increase over control, P < 0.05 to P < 0.001) in mice 1-24 mo of age. Increased SB weight was maintained after daily administration of GLP-2 to mice for 12 wk, and cessation of GLP-2 administration in older mice led to regression of (increased) SB weight and mucosal height. These observations suggest that GLP-2 regulates both cell proliferation and apoptosis and promotes intestinal growth after both short- and long-term administration in vivo.


2008 ◽  
Vol 295 (6) ◽  
pp. G1202-G1210 ◽  
Author(s):  
Catherine P. A. Ivory ◽  
Laurie E. Wallace ◽  
Donna-Marie McCafferty ◽  
David L. Sigalet

Glucagon-like peptide 2 (GLP-2) is an important intestinal growth factor with anti-inflammatory activity. We hypothesized that GLP-2 decreases mucosal inflammation and the associated increased epithelial proliferation by downregulation of Th1 cytokines attributable to reprogramming of lamina propria immune regulatory cells via an interleukin-10 (IL-10)-independent pathway. The effects of GLP-2 treatment were studied using the IL-10-deficient (IL-10−/−) mouse model of colitis. Wild-type and IL-10−/− mice received saline or GLP-2 (50 μg/kg sc) treatment for 5 days. GLP-2 treatment resulted in significant amelioration of animal weight loss and reduced intestinal inflammation as assessed by histopathology and myeloperoxidase levels compared with saline-treated animals. In colitis animals, GLP-2 treatment also reduced crypt cell proliferation and crypt cell apoptosis. Proinflammatory (IL-1β, TNF-α, IFN-γ,) cytokine protein levels were significantly reduced after GLP-2 treatment, whereas IL-4 was significantly increased and IL-6 production was unchanged. Fluorescence-activated cell sorting analysis of lamina propria cells demonstrated a decrease in the CD4+ T cell population following GLP-2 treatment in colitic mice and an increase in CD11b+/F4/80+ macrophages but no change in CD25+FoxP3 T cells or CD11c+ dendritic cells. In colitis animals, intracellular cytokine analysis demonstrated that GLP-2 decreased lamina propria macrophage TNF-α production but increased IGF-1 production, whereas transforming growth factor-β was unchanged. GLP-2-mediated reduction of crypt cell proliferation was associated with an increase in intestinal epithelial cell suppressor of cytokine signaling (SOCS)-3 expression and reduced STAT-3 signaling. This study shows that the anti-inflammatory effects of GLP-2 are IL-10 independent and that GLP-2 alters the mucosal response of inflamed intestinal epithelial cells and macrophages. In addition, the suggested mechanism of the reduction in inflammation-induced proliferation is attributable to GLP-2 activation of the SOCS-3 pathway, which antagonizes the IL-6-mediated increase in STAT-3 signaling.


Sign in / Sign up

Export Citation Format

Share Document