oral drug
Recently Published Documents


TOTAL DOCUMENTS

1791
(FIVE YEARS 590)

H-INDEX

89
(FIVE YEARS 12)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 197
Author(s):  
Chuanqi Wang ◽  
Manting Wang ◽  
Peng Chen ◽  
Jiexin Wang ◽  
Yuan Le

In this work, dasatinib (DAS) nanoemulsion and nanocrystal are produced by high-gravity technology that approaches to practical mass production. The drug nanoformulations were systematically characterized and evaluated. At a low high-gravity level (β) = 47, nanoemulsion droplets were 16.15 ± 0.42 nm with a PDI of 0.122 ± 0.021. The nanoemulsion’s size and active pharmaceutical ingredient (API) content remained stable at long-term (4 months) freeze–thaw and dilution experiments. At a high β = 188, the as-prepared nanocrystal was lamellar with a short diameter of about 200 nm and a long diameter of about 750 nm. In vitro performances demonstrated the nanoemulsion displayed higher cytotoxicity on MDA-MB-231 tumor cells, Caco-2 cell permeability and drug release than that of the nanocrystal, indicating that nanoemulsion should be an ideal alternative for dasatinib oral administration.


2022 ◽  
pp. 1-19
Author(s):  
Nökkvi S. Sigurdarson ◽  
Tobias Eifler ◽  
Martin Ebro ◽  
Panos Y. Papalambros

Abstract Configuration (or topology or embodiment) design remains a ubiquitous challenge in product design optimization and in design automation, meaning configuration design is largely driven by experience in industrial practice. In this article, we introduce a novel configuration redesign process founded on the interaction of the designer with results from rigorous multiobjective monotonicity analysis. Guided by Pareto-set dependencies, the designer seeks to reduce trade-offs among objectives or improve optimality overall, deriving redesigns that eliminate dependencies or relax active constraints. The method is demonstrated on an ingestible medical device for oral drug delivery, currently in early concept development.


ADMET & DMPK ◽  
2022 ◽  
Author(s):  
Marilyn N. Martinez ◽  
Mark G. Papich ◽  
Raafat Fahmy

Many gaps exist in our understanding of species differences in gastrointestinal (GI) fluid composition and the associated impact of food intake and dietary composition on in vivo drug solubilization. This information gap can lead to uncertainties with regard to how best to formulate pharmaceuticals for veterinary use or the in vitro test conditions that will be most predictive of species-specific in vivo oral product performance. To address these challenges, this overview explores species-specific factors that can influence oral drug solubility and the formulation approaches that can be employed to overcome solubility-associated bioavailability difficulties. These discussions are framed around some of the basic principles associated with drug solubilization, reported species differences in GI fluid composition, types of oral dosage forms typically given for the various animal species, and the effect of prandial state in dogs and cats. This basic information is integrated into a question-and-answer section that addresses some of the formulation issues that can arise in the development of veterinary medicinals.


2022 ◽  
pp. 23-53
Author(s):  
Sabya Sachi Das ◽  
Sweta Kar ◽  
Sandeep Kumar Singh ◽  
P.R.P. Verma ◽  
Afzal Hussain ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Dina B. Mahmoud ◽  
Mohamed Mofreh Bakr ◽  
Ahmed A. Al-karmalawy ◽  
Yassmin Moatasim ◽  
Ahmed El Taweel ◽  
...  

AbstractInvestigating bicelles as an oral drug delivery system and exploiting their structural benefits can pave the way to formulate hydrophobic drugs and potentiate their activity. Herein, the ability of non-ionic surfactants (labrasol®, tween 80, cremophore EL and pluronic F127) to form curcumin loaded bicelles with phosphatidylcholine, utilizing a simple method, was investigated. Molecular docking was used to understand the mechanism of bicelles formation. The % transmittance and TEM exhibited bicelles formation with labrasol® and tween 80, while cremophor EL and pluronic F127 tended to form mixed micelles. The surfactant-based nanostructures significantly improved curcumin dissolution (99.2 ± 2.6% within 10 min in case of tween 80-based bicelles) compared to liposomes and curcumin suspension in non-sink conditions. The prepared formulations improved curcumin ex vivo permeation over liposomes and drug suspension. Further, the therapeutic antiviral activity of the formulated curcumin against SARS-CoV-2 was potentiated over drug suspension. Although both Labrasol® and tween 80 bicelles could form bicelles and enhance the oral delivery of curcumin when compared to liposomes and drug suspension, the mixed micelles formulations depicted superiority than bicelles formulations. Our findings provide promising formulations that can be utilized for further preclinical and clinical studies of curcumin as an antiviral therapy for COVID-19 patients.


2021 ◽  
Vol 10 ◽  
Author(s):  
Saba Albetawi ◽  
Amer Abdalhafez ◽  
Ala Abu-Zaid

: Repaglinide is an antidiabetic drug that works by stimulating insulin secretion from pancreatic beta cells. Repaglinide is practically insoluble in water with a water solubility of 34 µg/mL at 37 ˚C, and it has a high absorption rate from the gastrointestinal tract following oral administration since the log P value of repaglinide is 3.97. The low aqueous solubility and the high permeability of repaglinide represent a typical behavior for drugs that belong to class II Biopharmaceutical Classification System (BCS II). Managing type-2 diabetes mellitus with repaglinide is considered a burdensome therapy, as it requires frequent dosing of repaglinide before each meal to maintain its therapeutic plasma concentration due to its short plasma half-life of approximately one hour. Hence the present review aims to discuss thoroughly the various approaches investigated in recent years to develop drug delivery systems that improve oral delivery of repaglinide, including nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, sustained-release hydrophilic matrix, floating microspheres, and nanocomposites.


Author(s):  
C. Tamilselvan ◽  
M. Swamivelmanickam ◽  
S. Sivakrishnan ◽  
R. Vinoth

Oral drug delivery system of Mouth Dissolving Tablets (MDTs) is using a new concept that have been mostly accepted in the pharmaceutical industry in recent days. This system is the most comfortable, safest and inexpensive of drug delivery system, enhancing the patient compliance and extending the patient life. Mouth dissolving formulations using an important ingredient or active agent due to allow release of drug is rapidly after that produce faster dissolution process. The mouth dissolving tablets contain a unique property of tablets like quickly disintegrating or easily dissolving and releasing the active drug within a few minutes and its contact with saliva. In pediatric, geriatric, bed ridden, psychic, dysphagic patients are using the MDTs because of these tablets are easily engulfing or swallowing is most convenient and patient compliance is better to compared than other Delivery systems. The tablets are formulated with an aid of super disintegrant. It's more reliable because of better compliance in patients. There are several technologies used in the MDTs manufacturing process such as patented technology & conventional technology. The important patented technologies are Durasolve Technology, Orasolve Technology, Zydis Technology, Wow Tab Technology, Flash Dose Technology, Flash Tab Technology and Quick Solv Technology. The MDTs are improving the demand for rapidly growing areas in the pharmaceutical industry and other fields are also in demand on these formulations. The recent progress of pharmaceutical fields is allowing the improvement of a better route of health care management with avoidance of numerous difficulties are connected to the other Drug Delivery System (DDS).


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (10) ◽  
pp. 60-62
Author(s):  
Priya Mourya ◽  
Anindya Goswami ◽  
Neelesh Malviya ◽  

Medicated candies are solid oral dosage form containing medicaments in a flavored and sweetened base. The main advantages associated with buccal drug delivery are systemic absorption of drug, also increased bioavailability and avoidance of hepatic first pass metabolism. Tenofovir alafenamide fumarate is a drug of choice for the treatment of human immunodeficiency virus due to its potency and fewer side effects over tenofovir disoproxil fumarate. The aim of the present research work was to formulate and evaluate candy of tenofovir alafenamide fumarate for pediatric and geriatric patients for better patient acceptability. Medicated candies of tenofovir alafenamide fumarate were prepared by using heating and congealing method, and the prepared formulations were evaluated for various parameters such as organoleptic properties, weight variation, friability, hardness, drug content and in vitro drug dissolution time profile. On the basis of the above studies, it can be concluded that medicated candy can be utilized as alternative option for oral drug delivery for pediatric and geriatric patients.


Sign in / Sign up

Export Citation Format

Share Document