scholarly journals Recent Advances in the Development of Highly Conductive Structured Supports for the Intensification of Non-adiabatic Gas-Solid Catalytic Processes: The Methane Steam Reforming Case Study

2022 ◽  
Vol 3 ◽  
Author(s):  
Riccardo Balzarotti ◽  
Matteo Ambrosetti ◽  
Alessandra Beretta ◽  
Gianpiero Groppi ◽  
Enrico Tronconi

Structured catalysts are strong candidates for the intensification of non-adiabatic gas-solid catalytic processes thanks to their superior heat and mass transfer properties combined with low pressure drops. In the past two decades, different types of substrates have been proposed, including honeycomb monoliths, open-cell foams and, more recently, periodic open cellular structures produced by additive manufacturing methods. Among others, thermally conductive metallic cellular substrates have been extensively tested in heat-transfer limited exo- or endo-thermic processes in tubular reactors, demonstrating significant potential for process intensification. The catalytic activation of these geometries is critical: on one hand, these structures can be washcoated with a thin layer of catalytic active phase, but the resulting catalyst inventory is limited. More recently, an alternative approach has been proposed, which relies on packing the cavities of the metallic matrix with catalyst pellets. In this paper, an up-to-date overview of the aforementioned topics will be provided. After a brief introduction concerning the concept of structured catalysts based on highly conductive supports, specific attention will be devoted to the most recent advances in their manufacturing and in their catalytic activation. Finally, the application to the methane steam reforming process will be presented as a relevant case study of process intensification. The results from a comparison of three different reactor layouts (i.e. conventional packed bed, washcoated copper foams and packed copper foams) will highlight the benefits for the overall reformer performance resulting from the adoption of highly conductive structured internals.

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 352 ◽  
Author(s):  
Eugenio Meloni ◽  
Marco Martino ◽  
Vincenzo Palma

Hydrogen is an important raw material in chemical industries, and the steam reforming of light hydrocarbons (such as methane) is the most used process for its production. In this process, the use of a catalyst is mandatory and, if compared to precious metal-based catalysts, Ni-based catalysts assure an acceptable high activity and a lower cost. The aim of a distributed hydrogen production, for example, through an on-site type hydrogen station, is only reachable if a novel reforming system is developed, with some unique properties that are not present in the large-scale reforming system. These properties include, among the others, (i) daily startup and shutdown (DSS) operation ability, (ii) rapid response to load fluctuation, (iii) compactness of device, and (iv) excellent thermal exchange. In this sense, the catalyst has an important role. There is vast amount of information in the literature regarding the performance of catalysts in methane steam reforming. In this short review, an overview on the most recent advances in Ni based catalysts for methane steam reforming is given, also regarding the use of innovative structured catalysts.


2016 ◽  
Vol 111 ◽  
pp. 217-230 ◽  
Author(s):  
Vincenzo Palma ◽  
Antonio Ricca ◽  
Eugenio Meloni ◽  
Marco Martino ◽  
Marino Miccio ◽  
...  

2020 ◽  
Author(s):  
Konstantin Khivantsev ◽  
Libor Kovarik ◽  
Nicholas R. Jaegers ◽  
János Szanyi ◽  
Yong Wang

<p>Atomically dispersed Pd +2 cations with ultra-dilute loading of palladium (0.005-0.05 wt%) were anchored on anatase titania and characterized with FTIR, microscopy and catalytic tests. CO infrared adsorption produces a sharp, narrow mono-carbonyl Pd(II)-CO band at ~2,130 cm<sup>-1</sup> indicating formation of highly uniform and stable Pd+2 ions on anatase titania. The 0.05 wt% Pd/TiO<sub>2</sub> sample was evaluated for methane combustion under dry and wet (industrially relevant) conditions in the presence and absence of carbon monoxide. Notably, we find the isolated palladium atoms respond dynamically upon oxygen concentration modulation (switching-on and switching off). When oxygen is removed from the wet methane stream, palladium ions are reduced to metallic state by methane and catalyze methane steam reforming instead of complete methane oxidation. Re-admission of oxygen restores Pd<sup>+2</sup> cations and switches off methane steam reforming activity. Moreover, 0.05 wt% Pd/TiO<sub>2</sub> is a competent CO oxidation catalyst in the presence of water steam with 90% CO conversion and TOF ~ 4,000 hr<sup>-1</sup> at 260 ⁰C. </p><p>More importantly, we find that diluting 0.05 wt% Pd/titania sample with titania to ultra-low 0.005 wt% palladium loading produces a remarkably active material for nitric oxide reduction with carbon monoxide under industrially relevant conditions with >90% conversion of nitric oxide at 180 ⁰C (~460 ppm NO and 150 L/g*hr flow rate in the presence of >2% water steam) and TOF ~6,000 hr<sup>-1</sup>. Pd thus outperforms state-of-the-art rhodium containing catalysts with (15-20 times higher rhodium loading; rhodium is ~ 3 times more expensive than palladium). Furthermore, palladium catalysts are more selective towards nitrogen and produce significantly less ammonia relative to the more traditional rhodium catalysts due to lower Pd amount nd lower water-gas-shift activity. Our study is the first example of utilizing ultra-low (0.05 wt% and less) noble metal (Pd) amounts to produce heterogeneous catalysts with extraordinary activity for nitric oxide reduction. This opens up a pathway to study other Pd, Pt and Rh containing materials with ultra-low loadings of expensive noble metals dispersed on titania or titania-coated oxides for industrially relevant nitric oxide abatement.</p>


Author(s):  
Sai Sharath Yadavalli ◽  
Glenn Jones ◽  
Michail Stamatakis

Ni catalysts used in Methane Steam Reforming (MSR) are highly susceptible to poisoning by carbon-based species, which poses a major impediment to the productivity of industrial operations. These graphitic carbon-like...


Sign in / Sign up

Export Citation Format

Share Document