scholarly journals Taguchi-Assisted Optimization Technique and Density Functional Theory for Green Synthesis of a Novel Cu-MOF Derived From Caffeic Acid and Its Anticancerious Activities

2021 ◽  
Vol 9 ◽  
Author(s):  
Malihe Zeraati ◽  
Ali Mohammadi ◽  
Somayeh Vafaei ◽  
Narendra Pal Singh Chauhan ◽  
Ghasem Sargazi

In this paper, we have reported an innovative greener method for developing copper-metal organic frameworks (Cu-MOFs) using caffeic acid (CA) as a linker extracted from Satureja hortensis using ultrasonic bath. The density functional theory is used to discuss the Cu-MOF-binding reaction mechanism. In order to achieve a discrepancy between the energy levels of the interactive precursor orbitals, the molecules have been optimized using the B3LYP/6–31G method. The Taguchi method was used to optimize the key parameters for the synthesis of Cu-MOF. FT-IR, XRD, nitrogen adsorption, and SEM analyses are used to characterize it. The adsorption/desorption and SEM analyses suggested that Cu-MOF has a larger surface area of 284.94 m2/g with high porosity. Cu-MOF has shown anticancer activities against the human breast cancer (MDA-MB-468) cell lines, and it could be a potent candidate for clinical applications.

2017 ◽  
Vol 79 (5-3) ◽  
Author(s):  
Wun-Fui Mark-Lee ◽  
Febdian Rusydi ◽  
Lorna Jeffery Minggu ◽  
Takashi Kubo ◽  
Mohammad Kassim

Ru(II) complexes, [Ru(bpy)2(m-R-L)](PF6)2 where bpy = 2,2’-bipyridyl and  m-R-L= 1-(meta-R)-benzoyl-3-(pyridine-2-yl)-1H-pyrazole derivatives (R = H, CH3 and Cl) abbreviated as RuL, Ru(m-CH3-L) and Ru(m-Cl-L) complexes, respectively, were synthesized and characterized with spectroscopic techniques namely, infrared, UV-Vis and nuclear magnetic resonance (NMR), photoluminescence and mass spectroscopy. Density functional theory (DFT) and time-dependent (TD) DFT calculations were carried out to study the structural and electronic features of the molecules. These Ru(II) complexes exhibit photo-electronic properties required for a photosensitiser in a TiO2-catalysed photoelectrochemical (PEC) cell. In-depth understanding of the R-L fragment functionality is important to tune the photo-electronic properties of the Ru(II) complex. The highest-occupied molecular orbital (HOMO) is mainly localized at the Ru(II) centre, while the LUMO is dominantly spread across the R-L ligand. The Ru(II) complexes showed favourable metal-to-ligand charge transfer (MLCT) energy levels, which are comparably higher than the conduction band of TiO2 to facilitate electron injection process. Among the Ru(II) complexes, Ru(m-Cl-L) comparatively possesses the highest photoluminescence quantum yield and has the potential to be applied as photosensitiser in PEC systems.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350055
Author(s):  
YUANZUO LI ◽  
CHAOFAN SUN ◽  
LINPO YANG

The ground-state structures and absorption spectra of three dyes, carbazole, phenothiazine and diphenylamine, were studied by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The strong absorption peak, electron transition as well as the energy levels of molecular orbitals were obtained and compared in the gas and solvent phase. Furthermore, we further calculated the effect of the expanding conjugated bridge on the absorption spectra and the energy levels of molecular orbitals. Visualized method of charge difference density (CDD) was used to show the direction of charge transfer in the molecules of interest during photo-excitation.


Sign in / Sign up

Export Citation Format

Share Document