scholarly journals DNA Origami-Templated Bimetallic Nanostar Assemblies for Ultra-Sensitive Detection of Dopamine

2021 ◽  
Vol 9 ◽  
Author(s):  
Vishaldeep Kaur ◽  
Mridu Sharma ◽  
Tapasi Sen

The abundance of hotspots tuned via precise arrangement of coupled plasmonic nanostructures highly boost the surface-enhanced Raman scattering (SERS) signal enhancements, expanding their potential applicability to a diverse range of applications. Herein, nanoscale assembly of Ag coated Au nanostars in dimer and trimer configurations with tunable nanogap was achieved using programmable DNA origami technique. The resulting assemblies were then utilized for SERS-based ultra-sensitive detection of an important neurotransmitter, dopamine. The trimer assemblies were able to detect dopamine with picomolar sensitivity, and the assembled dimer structures achieved SERS sensitivity as low as 1 fM with a limit of detection of 0.225 fM. Overall, such coupled nanoarchitectures with superior plasmon tunability are promising to explore new avenues in biomedical diagnostic applications.

2015 ◽  
Vol 17 (11) ◽  
pp. 114019 ◽  
Author(s):  
Maximilien Cottat ◽  
Nathalie Lidgi-Guigui ◽  
Frédéric Hamouda ◽  
Bernard Bartenlian ◽  
Divya Venkataraman ◽  
...  

2014 ◽  
Vol 26 (15) ◽  
pp. 2352-2352 ◽  
Author(s):  
Manohar Chirumamilla ◽  
Andrea Toma ◽  
Anisha Gopalakrishnan ◽  
Gobind Das ◽  
Remo Proietti Zaccaria ◽  
...  

2021 ◽  
Vol 2114 (1) ◽  
pp. 012084
Author(s):  
Hammad R. Humud ◽  
Fatimah Jumaah Moaen

Abstract The current study examines recent advancements in surface-enhanced Raman scattering (SERS), a technique that employs flexible surfaces as an active substrate, this surfaces consist from two-dimensional thermo-plasmonic grating. With 53 nm Au layer (was deposited on the 2D grating structure of the PDMS by the PVD method). The explosive wire technique was used to preparing Ag nanoparticles that were used for the purpose of SERS. The effect of the plasmonic nanostructures on the absorption spectra and Surface - Enhanced Raman Scattering (SERS) activities was examined. Rhodamine 6G dye was used as a probe molecule. X-Ray diffraction (XRD) was used to examine the structural characteristics of the nanoparticles. The morphology was assessed using Field Emission Scanning Electron Microscopy(FESEM). A twin beam UV-Vis Spectrophotometer was used to measure the absorption of the combined Rh6G dye (concentration 1×10“–6M) with the nanostructures. a Sunshine Raman microscope system and a 50mm objective lens, used for investigating the Raman spectra of the Rh6G combined with nanostructures. The results showed that the enhancement factor (EF) for SERS of R6G (1×M) reached to (2.2×10 3) When using Ag nanoparticles and (0.08 × 103) when R6G deposited directly on the flexible substrates without nanostructures at the wave number (1650 cm−1), we produced a recyclable, homogeneous, and highly sensitive SERS substrate with dependable reproducibility. For the SERS substrate, a surface made up of two-dimensional (2D) flexible grating substrates was chosen to provide multiple modalities in electrical and medicinal applications.


Sign in / Sign up

Export Citation Format

Share Document