scholarly journals Change in Computed Tomography-Derived Fractional Flow Reserve Across the Lesion Improve the Diagnostic Performance of Functional Coronary Stenosis

2022 ◽  
Vol 8 ◽  
Author(s):  
Hankun Yan ◽  
Yang Gao ◽  
Na Zhao ◽  
Wenlei Geng ◽  
Zhihui Hou ◽  
...  

Aims: This study sought to evaluate the diagnostic performance of change in computed tomography-derived fractional flow reserve (CT-FFR) across the lesion (ΔCT-FFR) for identifying ischemia lesions with FFR as the reference standard.Methods: Patients who underwent coronary CT angiography (CCTA) and FFR measurement within 1 week from December 2018 to December 2019 were retrospectively enrolled. CT-FFR within 2 cm distal to the lesion, ΔCT-FFR and plaque characteristics were analyzed. The diagnostic accuracy of CCTA (coronary stenosis ≥ 50%), CT-FFR ≤ 0.80, and ΔCT-FFR ≥ 0.15 (based on the largest Youden index) were assessed with FFR as the reference standard. The relationship between plaque characteristics and ΔCT-FFR was analyzed.Results: The specificity of ΔCT-FFR and CT-FFR were 70.8 and 67.4%, respectively, which were both higher than CCTA (39.3%) (both P < 0.001), while there were no statistical significance in sensitivity among the three (84.5, 77.4, 88.1%, respectively; P = 0.08). The area under the curves (AUCs) of ΔCT-FFR and CT-FFR were 0.803 and 0.743, respectively, which were both higher than that of CCTA (0.637) (both P < 0.05), and the AUC of ΔCT-FFR was higher than that of CT-FFR (P < 0.001). Multivariable analysis showed that low-attenuation plaque (LAP) volume (odds ratio [OR], 1.006) and plaque length (OR, 1.021) were independently correlated with ΔCT-FFR (both P < 0.05).Conclusions: CT-FFR and ΔCT-FFR and here especially the ΔCT-FFR could improve the diagnostic performance of ischemia compared with CCTA alone. LAP volume and plaque length were the independent risk factors of ΔCT-FFR.

Author(s):  
J. Peper ◽  
J. Schaap ◽  
B. J. W. M. Rensing ◽  
J. C. Kelder ◽  
M. J. Swaans

Abstract Purpose Invasive fractional flow reserve (FFR), the reference standard for identifying significant coronary artery disease (CAD), can be estimated non-invasively by computed tomography-derived fractional flow reserve (CT-FFR). Commercially available off-site CT-FFR showed improved diagnostic accuracy compared to coronary computed tomography angiography (CCTA) alone. However, the diagnostic performance of this lumped-parameter on-site method is unknown. The aim of this cross-sectional study was to determine the diagnostic accuracy of on-site CT-FFR in patients with suspected CAD. Methods A total of 61 patients underwent CCTA and invasive coronary angiography with FFR measured in 88 vessels. Significant CAD was defined as FFR and CT-FFR below 0.80. CCTA with stenosis above 50% was regarded as significant CAD. The diagnostic performance of both CT-FFR and CCTA was assessed using invasive FFR as the reference standard. Results Of the 88 vessels included in the analysis, 34 had an FFR of ≤ 0.80. On a per-vessel basis, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 91.2%, 81.4%, 93.6%, 75.6% and 85.2% for CT-FFR and were 94.1%, 68.5%, 94.9%, 65.3% and 78.4% for CCTA. The area under the receiver operating characteristic curve was 0.91 and 0.85 for CT-FFR and CCTA, respectively, on a per-vessel basis. Conclusion On-site non-invasive FFR derived from CCTA improves diagnostic accuracy compared to CCTA without additional testing and has the potential to be integrated in the current clinical work-up for diagnosing stable CAD.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ruitao Zhang ◽  
Jianwei Zhang ◽  
Lijun Guo

Background. Use of the fractional flow reserve (FFR) technique is recommended to evaluate coronary stenosis severity and guide revascularization. However, its high cost, time to administer, and the side effects of adenosine reduce its clinical utility. Two novel adenosine-free indices, contrast-FFR (cFFR) and quantitative flow ratio (QFR), can simplify the functional evaluation of coronary stenosis. This study aimed to analyze the diagnostic performance of cFFR and QFR using FFR as a reference index. Methods. We conducted a systematic review and meta-analysis of observational studies in which cFFR or QFR was compared to FFR. A bivariate model was applied to pool diagnostic parameters. Cochran’s Q test and the I2 index were used to assess heterogeneity and identify the potential source of heterogeneity by metaregression and sensitivity analysis. Results. Overall, 2220 and 3000 coronary lesions from 20 studies were evaluated by cFFR and QFR, respectively. The pooled sensitivity and specificity were 0.87 (95% CI: 0.81, 0.91) and 0.92 (95% CI: 0.88, 0.94) for cFFR and 0.87 (95% CI: 0.82, 0.91) and 0.91 (95% CI: 0.87, 0.93) for QFR, respectively. No statistical significance of sensitivity and specificity for cFFR and QFR were observed in the bivariate analysis (P=0.8406 and 0.4397, resp.). The area under summary receiver-operating curve of cFFR and QFR was 0.95 (95% CI: 0.93, 0.97) for cFFR and 0.95 (95% CI: 0.93, 0.97). Conclusion. Both cFFR and QFR have good diagnostic performance in detecting functional severity of coronary arteries and showed similar diagnostic parameters.


Sign in / Sign up

Export Citation Format

Share Document