scholarly journals The Effect of Multi-Scale Faults and Fractures on Oil Enrichment and Production in Tight Sandstone Reservoirs: A Case Study in the Southwestern Ordos Basin, China

2021 ◽  
Vol 9 ◽  
Author(s):  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Yunzhao Zhang ◽  
Guoping Liu ◽  
Shaoqun Dong

The Chang 8 Member of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin is a typical tight sandstone reservoir and has an average porosity of 8.60% and air permeability 0.20 mD. Multi-scale faults and fractures are widely developed in these reservoirs. In this study, three-dimensional seismic data, outcrops, cores, imaging logs, and thin sections were used to classify faults and fractures at multiple scales. Combined with the oil production data, the influence of multi-scale faults and fractures on the oil enrichment and production was analyzed. The results show multi-scale faults and fractures can be divided into six levels: type-I faults, type-II faults, large-scale fractures, mesoscale fractures, small-scale fractures, and micro-scale fractures. As the scale decreases, the number of fractures increases in a power function. Type-I faults cut the caprocks and are not conducive to the preservation of oil. Type-II faults connect the source rocks and reservoirs and are migration channels of the oil source. Large-scale fractures cut the mudstone interlayer and are the seepage channel inside the reservoir. Mesoscale fractures are controlled by thick interlayers, and small-scale fractures are restricted by thin interlayers or layer interfaces. These fractures are the main seepage channels and effective storage spaces. Micro-scale fractures serve as important storage spaces for these reservoirs. The case study of oil reservoir development proves that type-I faults have the greatest impact on fluid flow, while wells drilled into the type-II faults zone have a higher oil production capacity. The oil production changes with the development degree of fractures in different scales, strikes, and positions of faults. Meso- and small-scale fractures are the key to influencing the early single-well production, and micro-scale fractures are conducive to the stable production of single wells. Consequently, multi-scale faults and fractures have significantly different effects on the oil enrichment and production of tight sandstone reservoirs, and the research conclusions can guide to the exploration and development of such similar reservoirs.

Author(s):  
T. El-Aguizy ◽  
Sang-Gook Kim

The scale decomposition of a multi-scale system into small-scale order domains will reduce the complexity of the system and will subsequently ensure a success in nanomanufacturing. A novel method of assembling individual carbon nanotube has been developed based on the concept of scale decomposition. Current technologies for organized growth of carbon nanotubes are limited to very small-scale order. The nanopelleting concept is to overcome this limitation by embedding carbon nanotubes into micro-scale pellets that enable large-scale assembly as required. Manufacturing processes have been developed to produce nanopellets, which are then transplanted to locations where the functionalization of carbon nanotubes are required.


2002 ◽  
Vol 16 (1) ◽  
pp. 3-28 ◽  
Author(s):  
Jan Svejnar

I present data and assess the first twelve years of the transition from plan to market. Transformations have taken place, but the income gap between the transition and advanced economies has widened. Transition countries further east have performed worse than those further west, but policies matter. All countries carried out quickly Type I reforms, such as macroeconomic stabilization, price liberalization, small-scale privatization, and breakup of state-owned enterprises. They differed in Type II reforms, such as large-scale privatization and development of banking and legal systems. Countries that developed a functioning legal framework and corporate governance have performed better than others.


Author(s):  
J-F. Moyen ◽  
M. Cuney ◽  
D. Baratoux ◽  
P. Sardini ◽  
S. Carrouée

Abstract We describe the multi-scale distribution of K, Th and U in the ca. 3.1 Ga Heerenveen batholith of the Barberton Granite-Greenstone Terrain. Data were obtained with a combination of tools, including a portable gamma-ray spectrometer from the scale of the whole batholith to the scale of outcrops, and autoradiography for the thin section scale. U is concentrated preferentially in minor phases in the border shear zones of the batholith and, within these shear zones, in late pegmatites as well as fractures. The processes responsible for the concentration of U in the Heerenveen batholith is discussed in terms of magmatism, hydrothermalism (redistribution of U in fissures associated with magmato-hydrothermal fluids), and supergene alteration. The statistical properties of K, Th and U concentrations are different. K shows spatial correlation over large distance, largely mirroring mappable rock types, with increased variability at larger scales. In contrast, U is dominated by small-scale variations (“nugget effect”) and its variability is, averaged and smoothed by large-scale integration. Spatial and statistical features thus offer useful and complementary insights on petrogenetic and metallogenic processes in granitoids in addition to standard approaches (petrography, geochemistry).


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Na Cheng ◽  
Shuli Song ◽  
Wei Li

The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick’s Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward.


2017 ◽  
Vol 22 (6) ◽  
pp. 486-505 ◽  
Author(s):  
Benjamin Tukamuhabwa ◽  
Mark Stevenson ◽  
Jerry Busby

Purpose In few prior empirical studies on supply chain resilience (SCRES), the focus has been on the developed world. Yet, organisations in developing countries constitute a significant part of global supply chains and have also experienced the disastrous effects of supply chain failures. The purpose of this paper is therefore to empirically investigate SCRES in a developing country context and to show that this also provides theoretical insights into the nature of what is meant by resilience. Design/methodology/approach Using a case study approach, a supply network of 20 manufacturing firms in Uganda is analysed based on a total of 45 interviews. Findings The perceived threats to SCRES in this context are mainly small-scale, chronic disruptive events rather than discrete, large-scale catastrophic events typically emphasised in the literature. The data reveal how threats of disruption, resilience strategies and outcomes are inter-related in complex, coupled and non-linear ways. These interrelationships are explained by the political, cultural and territorial embeddedness of the supply network in a developing country. Further, this embeddedness contributes to the phenomenon of supply chain risk migration, whereby an attempt to mitigate one threat produces another threat and/or shifts the threat to another point in the supply network. Practical implications Managers should be aware, for example, of potential risk migration from one threat to another when crafting strategies to build SCRES. Equally, the potential for risk migration across the supply network means managers should look at the supply chain holistically because actors along the chain are so interconnected. Originality/value The paper goes beyond the extant literature by highlighting how SCRES is not only about responding to specific, isolated threats but about the continuous management of risk migration. It demonstrates that resilience requires both an understanding of the interconnectedness of threats, strategies and outcomes and an understanding of the embeddedness of the supply network. Finally, this study’s focus on the context of a developing country reveals that resilience should be equally concerned both with smaller in scale, chronic disruptions and with occasional, large-scale catastrophic events.


Sign in / Sign up

Export Citation Format

Share Document