scholarly journals Two-step Gravity Inversion Reveals Variable Architecture of African Cratons

2021 ◽  
Vol 9 ◽  
Author(s):  
Peter Haas ◽  
Jörg Ebbing ◽  
Nicolas L. Celli ◽  
Patrice F. Rey

The lithospheric build-up of the African continent is still to a large extent unexplored. In this contribution, we present a new Moho depth model to discuss the architecture of the three main African cratonic units, which are: West African Craton, Congo Craton, and Kalahari Craton. Our model is based on a two-step gravity inversion approach that allows variable density contrasts across the Moho depth. In the first step, the density contrasts are varied for all non-cratonic units, in the second step for the three cratons individually. The lateral extension of the tectonic units is defined by a regionalization map, which is calculated from a recent continental seismic tomography model. Our Moho depth is independently constrained by pointwise active seismics and receiver functions. Treating the constraints separately reveals a variable range of density contrasts and different trends in the estimated Moho depth for the three cratons. Some of the estimated density contrasts vary substantially, caused by sparse data coverage of the seismic constraints. With a density contrast of Δ ρ = 200 kg/m3 the Congo Craton features a cool and undisturbed lithosphere with smooth density contrasts across the Moho. The estimated Moho depth shows a bimodal pattern with average Moho depth of 39–40 km for the Kalahari and Congo Cratons and 33–34 km for the West African Craton. We link our estimated Moho depth with the cratonic extensions, imaged by seismic tomography, and with topographic patterns. The results indicate that cratonic lithosphere is not necessarily accompanied by thick crust. For the West African Craton, the estimated thin crust, i.e. shallow Moho, contrasts to thick lithosphere. This discrepancy remains enigmatic and requires further studies.

2008 ◽  
Vol 297 (1) ◽  
pp. 329-343 ◽  
Author(s):  
H. Ezzouhairi ◽  
M. L. Ribeiro ◽  
N. Ait Ayad ◽  
M. E. Moreira ◽  
A. Charif ◽  
...  

2021 ◽  
Author(s):  
Paul Yves Jean Antonio ◽  
Lenka Baratoux ◽  
Ricardo Ivan Ferreira Trindade ◽  
Sonia Rousse ◽  
Anani Ayite ◽  
...  

<p>The West African Craton (WAC) is one of the major cratons in the Rodinia jigsaw puzzle (~1000–750 Ma). In the Rodinian models, the position of West Africa is mainly constrained by the assumption that it had been a partner of Amazonia since the Paleoproterozoic. Unfortunately, no paleomagnetic data are available for these cratons when the Rodina supercontinent is considered tectonically stable (~1000-750 Ma). Thus, every new reliable paleomagnetic pole for the West African Craton during the Neoproterozoic times is of paramount importance to constrain its position and testing the Rodinia models. In this study we present a combined paleomagnetic and geochronological investigation for the Manso dyke swarm in the Leo-Man Shield, southern West Africa (Ghana). The ~860 Ma emplacement age for the NNW-trending Manso dykes is thus well-constrained by two new U-Pb apatite ages of 857.2 ± 8.5 Ma and 855 ± 16 Ma, in agreement with baddeleyite data. Remanence of these coarse-to-fine grained dolerite dykes is carried by stable single to pseudo-single domain (SD-PSD) magnetite. A positive baked-contact test, associated to a positive reversal test (Class-C), support the primary remanence obtained for these dykes (13 sites). Moreover, our new paleomagnetic dataset satisfy all the seven R-criteria (R=7). The ~860 Ma Manso pole can thus be considered as the first key Tonian paleomagnetic pole for West Africa. We propose that the West Africa-Baltica-Amazonia-Congo-São Francisco were associated in a long-lived WABAMGO juxtaposition (~1100–800 Ma).</p><p><strong>Keywords:</strong> West Africa, Neoproterozoic, Tonian, Rodinia, paleomagnetism.</p><p> </p>


2014 ◽  
Vol 255 ◽  
pp. 433-442 ◽  
Author(s):  
J. Javier Álvaro ◽  
André Pouclet ◽  
Hassan Ezzouhairi ◽  
Abderrahmane Soulaimani ◽  
El Hafid Bouougri ◽  
...  

2021 ◽  
Author(s):  
Zheng Gong ◽  
et al.

Detailed geochronological, paleomagnetic, and rock magnetic results.


Sign in / Sign up

Export Citation Format

Share Document