magmatic rocks
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 215)

H-INDEX

39
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Ian W.D. Dalziel ◽  
Lawrence A. Lawver

ABSTRACT The original location and tectonic setting of the prominent Paleocene dike swarm in the British Isles are reconstructed for a “tight fit” of the North Atlantic region prior to any Cenozoic opening of the ocean basin between Greenland and Europe. The present-day northwest-southeast–oriented swarm originally trended toward southern Greenland and the locations of magmatic rocks of comparable age along the eastern and western margins of Greenland and approximately the position of the Iceland hotspot at 70–60 Ma in a “fixed hotspot” model. This raises the possibility that the northeast-southwest–oriented extensional stress field in which the dikes and associated central igneous complexes were emplaced may have been generated by impingement on the base of the lithosphere by a rising plume beneath present-day West Greenland. It is speculated, on the basis of seismic tomography and three-dimensional modeling, that the Paleocene igneous activity in the British Isles may have resulted from flow of a hot “finger” of upper mantle outward from the plume, perhaps controlled by preexisting lithospheric structures and the distant location of a second Paleocene volcanic province in central Europe.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Olga Kiseleva ◽  
Pavel Serov ◽  
Evgenia Airiyants ◽  
Aleksey Travin ◽  
Dmitriy Belyanin ◽  
...  

We report the first radiogenic Nd-Sr isotope data in the magmatic rocks island-arc ophiolite assemblage from the middle branch of the East Sayan ophiolite complexes to better constrain geodynamic processes in this segment of the CAOB in southern central Siberia. The magmatic rocks belong to the following geochemical types: (1) Ensimatic island-arc boninites; (2) island-arc assemblage; (3) enriched basalts of mid-ocean ridges; and (4) oceanic island-like basalts. The boninites have a positive value εNd (T), which is generated from a depleted mantle source (N-MORB). The island-arc assemblage has negative or slightly positive εNd (T) and was formed from an enriched mantle source due to the subduction of terrigenous rocks. The source of the terrigenous material was most likely the rocks of the Archean TTG (Trondhjemite Tonalite Granodiorite) complex of the Gargan block. Isotopic ratios for E-MOR and OIB-like basalts are characterized by positive or slightly negative values of εNd (T). The mafic dike, which crosscut ophiolite rocks, corresponds to OIB-like basalts. The values of εNd (T), measured 87Sr/86Sr and I (Sr), in the mafic dike correspond to the EM I mantle source. The E-MOR and OIB-like basalts appear to be formed in late-stage asthenospheric mantle melting via the decompression melting processes. The obtained isotope geochemical data for the E-MOR and OIB-like basalts probably indicate the mixing of island-arc melts with asthenospheric melts. We undertook 40Ar/39Ar dating of the mafic dike, which crosscut the ophiolite unit. The mafic dike has a whole-rock 40Ar/39Ar weighted mean plateau age of 799 ± 11 Ma. The dating constrains the minimum age of the ophiolite and island-arc magmatism in the region.


Lithos ◽  
2022 ◽  
pp. 106594
Author(s):  
S. Sivaprabha ◽  
Irfan M. Bhat ◽  
T. Ahmad ◽  
T. Tanaka ◽  
S. Balakrishnan ◽  
...  

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Yury O. Redin ◽  
Anna A. Redina ◽  
Viktor P. Mokrushnikov ◽  
Alexandra V. Malyutina ◽  
Vladislav F. Dultsev

Many gold and gold-bearing complex deposits related to the Late Jurassic and Early Cretaceous magmatism are known in Eastern Transbaikalia. The largest deposits are the Lugokan, the Kultuma and the Bystrinsky. These deposits are in a paragenetic relationship with the Late Jurassic magmatic rocks of the Shakhtama complex. According to the available data, the total resources of gold in these three deposits are estimated to be approximately 443 tons: the Lugokan, Au~53 tons, Cu~302 thousand tons; the Kultuma, Au~121 tons, Cu~587 thousand tons, Fe~33 mln t; the Bystrinsky, Au~269 tons, Cu~2070 thousand tons, Fe~67 mln t. One of the main aims of this work was to reveal the criteria of fertility for the classical porphyry type, based on the specific geochemical features of rock-forming and accessory minerals. A comparison of the obtained results with other data on the large porphyry and skarn deposits of the world showed that the magmatic rocks of the Bystrinsky massif, specifically porphyry species dated 159.6–158.6 Ma, are potentially ore-bearing for the porphyry type mineralization. The magmatic rocks that widely occur at the Lugokan and Kultuma deposits are most close to the Fe-skarn deposits. The best indicators of the magma fertility for the porphyry rocks are Ce/Ce*, Eu/Eu*, Yb/Dy, (Ce/Nd)/Y in zircons. Thus, magmatic rocks characterized by Ce/Ce* > 100, Eu/Eu* > 0.4, Yb/Dy > 5.0 and (Ce/Nd)/Y > 0.01 may be classified as high fertile for the classical porphyry mineralization in Eastern Transbaikalia. The plagioclase and biotite chemistry data also showed that the magmatic rocks that occurred at the Bystrinsky deposit are the most fertile for the porphyry type mineralization. The magmatic rocks classified as ore-bearing porphyry type have Al* > 1 in plagioclase, high values of IV(F) and IV(F/Cl) and low ratios of X(F)/X(OH) in biotites. The assessment of the metal fertility of magmatic rocks is most effective in combination with data on both the composition of rock-forming and accessory minerals. The obtained data may be used to develop the methods of prediction and search for gold, copper and iron mineralization.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Yuntao Li ◽  
Qingye Hou ◽  
Yu Xiao

Regional geochemical anomalies in stream sediments often have close spatial relationships with metallogenic provinces or ore districts, but the relationships between them have not been examined in depth. In this study, stream sediments were collected around the Zijinshan Copper-Gold Orefield, Fujian Province, China. Element geochemistry, U–Pb geochronology and Hf isotope compositions of detrital zircons, and electron microprobe and LA-ICP-MS analyses of iron oxides were conducted. The aims of this study were to investigate the relationship between the provenance of the stream sediments and ore-bearing magmatic rocks in the Zijinshan Copper-Gold Orefield, and to explore the enrichment mechanism of the ore-forming elements in stream sediments. The results show that the ore-forming elements and their associated elements are most significantly enriched in stream sediments near the orefield. U–Pb ages and Hf isotopic compositions of detrital zircons in the sediments closest to the orefield carry information on the ore- bearing magmatic rocks in the orefield. However, as the stream sediments are relatively far from the orefield, the degree of enrichment of ore-forming elements and the detrital zircon U–Pb age signals of the ore-bearing magmatic rocks in the orefield rapidly weaken. This weakening of the geochemical signals may have been affected by many factors, such as lithological resistance to weathering, vegetation coverage, micro-topographic conditions, etc. In-situ elements analysis of iron oxides and elemental correlation analysis of stream sediments indicate iron oxides and clay minerals are the main carrier minerals for the migration of ore-forming elements.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yury O. Redin ◽  
Anna A. Redina ◽  
Viktor P. Mokrushnikov ◽  
Alexandra V. Malyutina ◽  
Vladislav F. Dultsev

The Kultuma deposit is among the largest and most representative Au–Cu–Fe–skarn deposits situated in Eastern Transbaikalia. However, its genetic classification is still a controversial issue. The deposit is confined to the similarly named massif of the Shakhtama complex, which is composed mainly of quartz monzodiorite-porphyry and second-phase monzodiorite-porphyry. The magmatic rocks are characterized by a low Fe2O3/FeO ratio, low magnetic susceptibility and belong to meta-aluminous, magnesian high-potassic calc-alkalic reduced granitoids of type I. The results of 40Ar-39Ar and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating showed that the formation of magmatic rocks proceeded during the Late Jurassic time: 161.5–156.8 Ma. Relatively low Ce/Ce*, Eu/Eu* and Dy/Yb ratios in the zircons indicate that the studied magmatic rocks were formed under relatively reduced conditions and initially contained a rather low amount of magmatic water. A mineralogical–geochemical investigation allowed us to outline five main stages (prograde skarn, retrograde skarn, potassic alteration, propylitic (hydrosilicate) alteration and late low-temperature alteration) of mineral formation, each of them being characterized by a definite paragenetic mineral association. The major iron, gold and copper ores were formed at the stage of retrograde skarn and potassic alteration, while the formation of polymetallic ores proceeded at the stage of propylitic alteration. The obtained timing of the formation of retrograde skarn (156.3 Ma) and magmatic rocks of the Shakhtama complex, along with the direct geological observations, suggest their spatial–temporal and genetic relationship. The data obtained on the age of magmatic rocks and ore mineralization are interpreted as indicating the formation of the Kultuma deposit that proceeded at the final stages of collision. Results of the investigation of the isotope composition of S in sulfide minerals point to their substantial enrichment with the heavy sulfur isotope (δ34S from 6.6 to 16‰). The only exclusion with anomalous low δ34S values (from 1.4 to 3.7‰) is pyrrhotite from retrograde skarns of the Ochunogda region. These differences are, first of all, due to the composition of the host rocks. Results of the studies of C and O isotope composition allow us to conclude that one of the main sources of carbon was the host rocks of the Bystrinskaya formation, while the changes in the isotope composition of oxygen are mainly connected with decarbonization processes and the interactions of magmatic fluids, host rocks and meteoric waters. The fluids that are responsible for the formation of the mineral associations of retrograde skarns and the zones of potassic alteration at the Kultuma deposit were reduced, moderately hot (~360–440 °С) and high-pressure (estimated pressure is up to 2.4 kbar). The distinguishing features of the fluids in the zones of potassic alteration at the Ochunogda region are a lower concentration and lower estimated pressure values (~1.7 kbar). The propylitic alteration took place with the participation of reduced lower-temperature (~280–320 °C) and lower-pressure (1–1.2 kbar) fluids saturated with carbon dioxide, which were later on diluted with meteoric waters to become more water-rich and low-temperature (~245–260 °C). The studies showed that the main factors that affected the distribution and specificity of mineralization are magmatic, lithological and structural–tectonic ones. Results of the studies allow us to classify the Kultuma deposit as a Au–Cu–Fe–skarn deposit related to reduced intrusion.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Huu Hiep NGUYEN ◽  
Nhu Sang PHAM ◽  
Van Long HOANG ◽  
Carter ANDREW ◽  
Vinh Hau BUI ◽  
...  

South-central Vietnam abundantly presents magmatic rocks with larger volumes ofCretaceous granitic rocks. In this study, zircon U–Pb geochronology of granite samples from the Deoca,Ankroet, and Dinhquan complexes in south-central Vietnam are utilized to investigate Cretaceousgranitic magmatism. According to U–Pb analysis results, zircon ages of granitic rocks display the Deocaat ~113–92 Ma, the Ankroet at ~103–98 Ma, and the Dinhquan at ~97–113 Ma. The range of ages isnarrow from 113 to 92 Ma, with most common ages date at ~100 Ma. Published data and our resultsdisplay that Cretaceous granitic magmatism was active between ~87–118 Ma and most active at ~100Ma in south-central Vietnam. Additionally, the Deoca and Dinhquan complexes show inherited ages inTriassic followed by Proterozoic and Carboniferous to Ordovician. The obtained ages indicate that Itypegranitic rocks could be derived from melting of basement rocks. Our study suggests that I-typegranitic rocks in south-central Vietnam were significantly intruded around 100 Ma.


Sign in / Sign up

Export Citation Format

Share Document