ore deposits
Recently Published Documents


TOTAL DOCUMENTS

3006
(FIVE YEARS 598)

H-INDEX

74
(FIVE YEARS 7)

Author(s):  
L.K. Miroshnikova ◽  
A.Yu. Mezentsev ◽  
G.A. Kadyralieva ◽  
M.A. Perepelkin

This study focuses on the markers of tectonically stressed zones inside the rock mass, that were identified during the regional geodynamic zoning of the mine fields of the Talnakh orogenic system. Identification features for tracing geodynamically active structures within the western flank of the Talnakh orogenic system have been identified based on morphometric analysis of the Tunguska series sediments, which are the upper layer of the ore-bearing intrusions and associated ore deposits. In the larger morphostructural groups, the boundaries of contrastingly alternating zones of elevated and depressed absolute depths at the base and the roof of the Tunguska series sediments represent the boundaries of tectonic blocks of different elevation levels with sharply contrasting indices of terrain stress. The circular-shaped structures highlighted in the morphostructural schemes spatially coincide with the tectonic forms were formed as the result of strike-slip and torsional processes. A heterogeneity, which is reflected in the allocation of blocks with different values of the stress distribution coefficient (K) is identified in the initial stress field of the Tunguska series sediments. The boundaries of the geodynamic blocks that were identified using to different methods are identical. It is established that the assumed faults correspond to the faults identified based on the detailed exploration data.


Author(s):  
Nils Reinhardt ◽  
Axel Gerdes ◽  
Aratz Beranoaguirre ◽  
Max Frenzel ◽  
Lawrence D. Meinert ◽  
...  

AbstractHere, we present in situ U–Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) ages of andradite-grossular garnet from four magmatic-hydrothermal polymetallic skarn prospects in the Schwarzenberg District, Erzgebirge (Germany), located in the internal zone of the Variscan Orogenic Belt. Within the geochronological framework of igneous rocks and hydrothermal mineralization in the Erzgebirge, the obtained garnet ages define three distinct episodes of Variscan skarn formation: (I) early late-collisional mineralization (338–331 Ma) recording the onset of magmatic-hydrothermal fluid flow shortly after the peak metamorphic event, (II) late-collisional mineralization (~ 327–310 Ma) related to the emplacement of large peraluminous granites following large-scale extension caused by orogenic collapse and (III) post-collisional mineralization (~ 310–295 Ma) contemporaneous with widespread volcanism associated with Permian crustal reorganization. Our results demonstrate that the formation of skarns in the Schwarzenberg District occurred episodically in all sub-stages of the Variscan orogenic cycle over a time range of at least 40 Ma. This observation is consistent with the age range of available geochronological data related to magmatic-hydrothermal ore deposits from other internal zones of the Variscan Orogenic Belt in central and western Europe. In analogy to the time–space relationship of major porphyry-Cu belts in South America, the congruent magmatic-hydrothermal evolution in the internal zones and the distinctly later (by ~ 30 Ma) occurrence of magmatic-hydrothermal ore deposits in the external zones of the Variscan Orogenic Belt may be interpreted as a function of their tectonic position relative to the Variscan collisional front.


2022 ◽  
pp. 75-84
Author(s):  
Maria Zaitseva

The paper discusses the lithological and facial features of the terrigenous-carbonate (biohermic) ore-bearing geological formation of the Moryanikho-Merkurikhinskoye ore field (Yenisei Ridge), which hosts stratiform lead-zinc deposits in carbonate strata. Ore-hosting lithofacies and their paleostructural position are characterized. Based on the previous studies, as well as the author’s own materials obtained as a result of field work, the main favorable lithological, facial and structural factors for hosting Moryanikhinsky-type stratiform lead-zinc mineralization are defined: the presence of paleodepressions within the shelf zone; development of carbonate rocks – dolomites, stromatolite dolomites and limestones, which are biohermic structures on the slopes of paleo-uplifts; the presence of an admixture of tuffaceous material in terrigenous rock varieties. The influence of tectonic faults on the formation of ore deposits and the morphology of ore bodies is indicated. The main types of ores of the Moryanikho- Merkurikhinsky ore field, as well as their mineral composition are described. The paper discusses the main ore types, as well as their mineral composition typical of the Moryanikho-Merkurikhinskoye ore field. The largest and well-studied lead and zinc stratiform Moryanikhinskoye deposit and Merkurikhinskoye ore occurrence located within the ore field are briefly characterized. The Moryanikhinskoye deposit is a typical example for searching for stratiform deposits of lead and zinc in the carbonate strata of the Angara-Bolshepitskaya mineragenic zone, which is of practical interest in developing predictive prospecting models of deposits and improving the efficiency of prospecting.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel Bursák ◽  
Alžběta Danielisová ◽  
Tomáš Magna ◽  
Petr Pajdla ◽  
Jitka Míková ◽  
...  

AbstractAncient brass (aurichalcum) was a valued commodity in the Antiquity, notably because of its gold-like appearance. After mastering brass fabrication using the cementation procedure in the first century BC in the Mediterranean, this material became widely used by the Romans for coins, jewellery and other artefacts. Because of its visual qualities, it is believed that since this period, brass played an important role in diplomatic and economic contacts with indigenous communities, notably Celtic and Germanic tribes north of Danube and west of Rhine. To test this hypothesis, we performed for the first time the advanced statistical multivariate analysis based on chemical composition and lead isotope systematics, coupled with informed typo-chronological categorisation, of a suite of late Iron Age and Early Roman period (first century BC – first century AD) brass and other copper-alloy artefacts from the territory of Bohemia. In order to to discuss their provenance, the results were compared to known contemporary sources of material. The new results for brass artefacts from this early phase of the massive occurrence of Roman aurichalcum in the Barbarian territories point to the ore deposits in the western Mediterranean or the Massif Central area in Gaul, consistent with historical events. These new findings underscore the great economic and political importance of the new and rich mineral resources in the Transalpine Gaul acquired due to Caesar's military campaigns.


2022 ◽  
Vol 962 (1) ◽  
pp. 012051
Author(s):  
B Gongalsky

Abstract The aggregate of ore deposits localized in the Udokan-Chineysky ore district is unique and is the result of multi–stage, polygenetic formation. The deposits of copper and other metals formed at various depths occur within a limited area. The oxide and sulfide ore are spatially associated in the sedimentary rocks pertaining to the Paleoproterozoic Udokan Supergroup and the intrusive mafic–ultramafic rocks of the Chineysky Complex. The granite rocks of the Kodar Complex and gabbro rocks of the Chineysky Complex also date back to Paleoproterozoic. The same age has been established for metasomatic Nb–Ta–Zr–REE–Y and U mineralization in the albitized terrigenous rocks of the Udokan Supergroup (Katugin deposit and Chitkanda prospect) and U–Pd prospects hosted in terrigenous rocks. The U–REE mineralization superposed on the titanomagnetite deposits in the Chineysky pluton has not analogues in the world’s practice. The occurrences of uranium mineralization have been noted in form of pitchblende and U–Th rims around chalcopyrite grains at the Unkur copper deposit hosted in sedimentary rocks. The enrichment in U and Pb has been documented in crosscutting quartz veinlets with bornite mineralization at the Udokan deposit.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Iuliu Bobos ◽  
Carlos Marques de Sá ◽  
Fernando Noronha

Scheelitization of Mn-bearing wolframite, scheelite, quartz, and Fe,Mn-chlorite veins was identified in the W, (Cu,Mo) ore deposits of Borralha, by optical microscopy, electron-microprobe analysis, and stable isotope geochemistry. Fluid inclusions derived scheelite crystallization temperature was compared with the oxygen isotope temperature estimated. Scheelite was formed mainly during stage I from a low salinity aqueous-carbonic fluid dominated by CO2, where the homogenization temperature (Th) decreased from 380 °C to 200 °C (average of 284 °C). As temperature decreased further, the aqueous-carbonic fluid became dominated by CH4 (Stage II; (average Th = 262 °C)). The final stage III corresponds to lower temperature mineralizing aqueous fluid (average Th = 218 °C). In addition, salinity gradually decreased from 4.8 wt.% to 1.12 wt.%. The δ18OFluid values calculated for quartz-water and wolframite-water fractionation fall within the calculated magmatic water range. The ∆quartz-scheelite fractionation occurred at about 350–400 °C. The ∆chlorite-water fractionation factor calculated is about +0.05‰ for 330 °C, dropping to −0.68‰ and −1.26‰ at 380 °C and 450 °C, respectively. Estimated crystallizing temperatures based on semi-empirical chlorite geothermometers range from 373 °C to 458 °C and 435 °C to 519 °C. A narrower temperature range of 375 °C to 410 °C was estimated for Fe,Mn-chlorite crystallization.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1431
Author(s):  
Justyna Auguścik-Górajek ◽  
Jacek Mucha ◽  
Monika Wasilewska-Błaszczyk ◽  
Wojciech Kaczmarek

As a result of the exploitation of ore deposits, in addition to the main elements, the accompanying elements are also partially recovered. Some of them increase the profitability of exploitation, while others reduce it because they hinder the recovery of the main elements and thus increase the costs of the recovery process. A comprehensive economic calculation to assess the profitability of ore mining depends on an appropriately accurate estimation of the resources of both the main and associated elements. This issue was analyzed with the example of the Cu-Ag Rudna ore deposit (LGCD, Poland). The subject of the assessment was the resources prediction accuracy of the main element (Cu) and four (4) accompanying elements (Co, Ni, Pb, and V) using geostatistical estimation method, in particular the ordinary kriging after the estimation of the relative variograms for describing the spatial variability structures of elements abundance. It was found that the standard kriging errors (deviations) in accompanying elements resources that are scheduled for exploitation within a one-year period in some parts of deposits are drastically greater (2 to 5 times) than the estimation errors of the main element resources. This is due to the sparse sampling pattern for their determinations and/or the high variability (among others nugget effect) of their abundance. In this situation, without additional sampling and a denser sampling pattern, the possibilities of a reliable assessment of the influence of accompanying elements on the economic consequences of exploitation are very limited.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1432
Author(s):  
Ilhwan Park ◽  
Yuki Kanazawa ◽  
Naoya Sato ◽  
Purevdelger Galtchandmani ◽  
Manis Kumar Jha ◽  
...  

The global demand for rare earth elements (REEs) is expected to increase significantly because of their importance in renewable energy and clean storage technologies, which are critical for drastic carbon dioxide emission reduction to achieve a carbon-neutral society. REE ore deposits around the world are scarce and those that have been identified but remain unexploited need to be developed to supply future demands. In this study, the Khalzan Buregtei deposit located in western Mongolia was studied with the aim of upgrading low-grade REE ore via magnetic separation techniques. The total REE content in this ore was ~6720 ppm (~3540 ppm light REE (LREE) + ~3180 ppm heavy REE (HREE)) with bastnaesite, pyrochlore, synchysite, and columbite-(Fe) identified as the main REE-bearing minerals. As the particle size fraction decreased from −4.0 + 2.0 mm to −0.5 + 0.1 mm, the recovery by dry high-intensity magnetic separation (DHIMS) increased from 20% to 70% of total rare earth oxide (TREO) while the enrichment ratio reached 2.8 from 1.3. Although effective, gangue minerals such as quartz and aluminosilicates were recovered (~22%) due most likely to insufficient liberation. Meanwhile, the wet high-intensity magnetic separation (WHIMS) could produce a magnetic concentrate with TREO recovery of ~80% and enrichment ratio of 5.5 under the following conditions: particle size fraction, −106 + 75 μm; feed flow rate, 3.2 L/min; magnetic induction, 0.8 T. These results indicate that combining DHIMS and WHIMS to upgrade the low-grade REE ore from the Khalzan Buregtei deposit is an effective approach.


2021 ◽  
Vol 2 (11(75)) ◽  
pp. 10-15
Author(s):  
N. Turtygina ◽  
A. Okhrimenko

The work is devoted to a very topical issue - predicting quality indicators in underground mining of ore deposits. In this work, the conditions and ways of improving the quality of ores during mining were studied on the example of deposits of rich ores in the northern flanks of the Talnakh and Oktyabrsky deposits of Talnakh. The studies were carried out in specific conditions at the mining enterprises of the Polar Division of the Public Joint Stock Company Mining and Metallurgical Company Norilsk Nickel. The northern deposits of the Talnakhskoye deposit represent the main prospect for replenishing the retired production capacities for the extraction of high-grade ores. The significant heterogeneity of the distribution of the metal content in industrial reserves of rich copper-nickel ores is the primary cause of high fluctuations in the quality of ore flow, which requires the use of the most advanced mining technologies to control the quality of ores during extraction. The process of forming the required quality level of mined ores at the mines of the Polar Division of PJSC MMC Norilsk Nickel is of paramount importance. However, during the development of deposits of «rich» ores in the ore stream «mine - processing plant», significant fluctuations in the quality of the ore mass are formed, which lead to losses of metals in the process of concentration and during metallurgical redistribution, thereby reducing the economic efficiency of the entire mining and metallurgical complex, as determines the relevance of the work.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Tien Dung NGUYEN ◽  
Khac Du NGUYEN ◽  
Ngoc Thom NGUYEN

The Pb-Zn mineralization in the Cho Don - Cho Dien ore districts often occurs in 2 types: (1)oxidized ore near to the surface and (2) sulfide ore at deeper section. Based on microscopic observations,sulfide ores can be divided into sphalerite-galena-pyrite and/or galena-sphalerite mineralization types. Toexamine the geochemical features of the Pb-Zn ores, SEM-EDX and ICP-MS analytical methods wereperformed in this study. Previous δ34S data of Pb-Zn concentrates, and sulfide minerals from variousdeposits suggest that the Pb-Zn ore-forming fluids might be related to the felsic-granitic magmaticactivities rather than a genesis of stratiform type. Geochemical data show that the major, minor, and traceelement compositions of lead-zinc ores have wide ranges of variation even in each deposit. The sulfideores are generally higher in economic components than those in the oxidized ores. The positivecorrelations between Pb-Ag can be found in the entire dataset, whereas excellent Zn-Cd correlation canonly be observed from Cho Don ore samples. Apart from the principal components (Pb and Zn), the oresalso contain other accompanying elements that supply high-technological manufacturing industries. Ofwhich As, Cu, Ag, Sb, and Cd could be potential by-products and can be extracted during smelting Pb/Znconcentrate processes, and need more detailed studies for every deposit.


Sign in / Sign up

Export Citation Format

Share Document