scholarly journals Power Configuration Scheme for Battery Energy Storage Systems Considering the Renewable Energy Penetration Level

2021 ◽  
Vol 9 ◽  
Author(s):  
Qing Chen ◽  
Rui Xie ◽  
Yuyan Chen ◽  
Heyu Liu ◽  
Shengqi Zhang ◽  
...  

With the increase of the renewable energy penetration (REP) level in the interconnected power grid, the proportion of the grid-connected conventional synchronous generators reduces continuously, resulting in the decrease of the system inertia. The insufficient system inertia brings challenges to the system frequency stability. Battery energy storage systems (BESSs), regarded as the high-quality frequency regulation resource, play an important role in maintaining the frequency stability of the system with the high REP level. To configure the proper power of BESSs in system frequency regulation, a BESS power configuration scheme (PCS) considering the REP constraint is proposed in this paper. In particular, the process to obtain the REP boundary of the interconnected grid on the premise of system frequency stability is included in the PCS, and the optimal power configuration of the BESS is further determined on the analysis of the BESS impact on the REP boundary. Furthermore, a simulation model of the Australian five-area interconnected power grid is built in MATLAB/Simulink, and the proposed REP-constrained PCS is verified and analyzed. At last, the promising results show that the PCS can take full advantages of the BESS in frequency regulation and meet the system requirement of the frequency stability at a particular REP level.

2021 ◽  
Author(s):  
Hassan Hayajneh ◽  
Xuewei Zhang

To minimize the curtailment of renewable generation and incentivize grid-scale energy storage deployment, a concept of combining stationary and mobile applications of battery energy storage systems built within renewable energy farms is proposed. A simulation-based optimization model is developed to obtain the optimal design parameters such as battery capacity and power ratings by solving a multi-objective optimization problem that aims to maximize the economic profitability, the energy provided for transportation electrification, the demand peak shaving, and the renewable energy utilized. Two applications considered for the stationary energy storage systems are the end-consumer arbitrage and frequency regulation, while the mobile application envisions a scenario of a grid-independent battery-powered electric vehicle charging station network. The charging stations receive supplies from the energy storage system that absorbs renewable energy, contributing to a sustained DC demand that helps with revenues. Representative results are presented for two operation modes and different sets of weights assigned to the objectives. Substantial improvement in the profitability of combined applications over single stationary applications is shown. Pareto frontier of a reduced dimensional problem is obtained to show the trade-off between design objectives. This work could pave the road for future implementations of the new form of energy storage systems.<br>


Sign in / Sign up

Export Citation Format

Share Document